A094435 Triangular array read by rows: T(n,k) = Fibonacci(k)*C(n,k), k = 1...n; n>=1.
1, 2, 1, 3, 3, 2, 4, 6, 8, 3, 5, 10, 20, 15, 5, 6, 15, 40, 45, 30, 8, 7, 21, 70, 105, 105, 56, 13, 8, 28, 112, 210, 280, 224, 104, 21, 9, 36, 168, 378, 630, 672, 468, 189, 34, 10, 45, 240, 630, 1260, 1680, 1560, 945, 340, 55, 11, 55, 330, 990, 2310, 3696, 4290, 3465, 1870, 605, 89
Offset: 1
Examples
First few rows: 1; 2 1; 3 3 2; 4 6 8 3; 5, 10, 20, 15, 5; 6, 15, 40, 45, 30, 8;
Links
- G. C. Greubel, Rows n = 1..100 of triangle, flattened
Crossrefs
Programs
-
GAP
Flat(List([1..12], n-> List([1..n], k-> Binomial(n,k)*Fibonacci(k) ))); # G. C. Greubel, Oct 30 2019
-
Magma
[Binomial(n,k)*Fibonacci(k): k in [1..n], n in [1..12]]; // G. C. Greubel, Oct 30 2019
-
Maple
with(combinat); seq(seq(binomial(n,k)*fibonacci(k), k=1..n), n=1..12); # G. C. Greubel, Oct 30 2019
-
Mathematica
Table[Fibonacci[k]*Binomial[n, k], {n, 12}, {k, n}]//Flatten (* G. C. Greubel, Oct 30 2019 *)
-
PARI
T(n,k) = binomial(n,k)*fibonacci(k); for(n=1,12, for(k=1,n, print1(T(n,k), ", "))) \\ G. C. Greubel, Oct 30 2019
-
Sage
[[binomial(n,k)*fibonacci(k) for k in (1..n)] for n in (1..12)] # G. C. Greubel, Oct 30 2019
Formula
From G. C. Greubel, Oct 30 2019: (Start)
T(n, k) = binomial(n, k)*Fibonacci(k).
Sum_{k=1..n} binomial(n,k)*Fibonacci(k) = Fibonacci(2*n).
Sum_{k=1..n} (-1)^(k-1)*binomial(n,k)*Fibonacci(k) = Fibonacci(n). (End)
Comments