A094436 Triangular array T(n,k) = Fibonacci(k+1)*binomial(n,k) for k = 0..n; n >= 0.
1, 1, 1, 1, 2, 2, 1, 3, 6, 3, 1, 4, 12, 12, 5, 1, 5, 20, 30, 25, 8, 1, 6, 30, 60, 75, 48, 13, 1, 7, 42, 105, 175, 168, 91, 21, 1, 8, 56, 168, 350, 448, 364, 168, 34, 1, 9, 72, 252, 630, 1008, 1092, 756, 306, 55, 1, 10, 90, 360, 1050, 2016, 2730, 2520, 1530, 550, 89
Offset: 0
Examples
First four rows: 1 1 1 1 2 2 1 3 6 3 Sum = 1+3+6+3=13=F(7); alt.Sum = 1-3+6-3=1=F(2). T(3,2)=F(3)C(3,2)=2*3=6. From _Philippe Deléham_, Mar 26 2012: (Start) (1, 0, 0, 1, 0, 0, 0, ...) DELTA (0, 1, 1, -1, 0, 0, 0, ...) begins : 1 1, 0 1, 1, 0 1, 2, 2, 0 1, 3, 6, 3, 0 1, 4, 12, 12, 5, 0 1, 5, 20, 30, 25, 8, 0 1, 6, 30, 60, 75, 48, 13, 0 . (End)
Links
- G. C. Greubel, Rows n = 0..100 of triangle, flattened
- Michael Griffin, Ken Ono, Larry Rolen, and Don Zagier, Jensen polynomials for the Riemann zeta function and other sequences, PNAS, vol. 116, no. 23, 11103-11110, June 4, 2019.
Crossrefs
Programs
-
GAP
Flat(List([0..12], n-> List([0..n], k-> Fibonacci(k+1)* Binomial(n,k) ))); # G. C. Greubel, Jul 11 2019
-
Magma
[Fibonacci(k+1)*Binomial(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jul 11 2019
-
Maple
with(combinat); seq(seq(fibonacci(k+1)*binomial(n,k), k=0..n), n=0..12); # G. C. Greubel, Oct 30 2019
-
Mathematica
(* First program *) u[1, x_] := 1; v[1, x_] := 1; z = 13; u[n_, x_] := u[n - 1, x] + x*v[n - 1, x]; v[n_, x_] := x*u[n - 1, x] + (x + 1)*v[n - 1, x]; Table[Expand[u[n, x]], {n, 1, z/2}] Table[Expand[v[n, x]], {n, 1, z/2}] cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; TableForm[cu] Flatten[%] (* A094436 *) Table[Expand[v[n, x]], {n, 1, z}] cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; TableForm[cv] Flatten[%] (* A094437 *) (* Second program *) Table[Fibonacci[k+1]*Binomial[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Jul 11 2019 *)
-
PARI
T(n,k) = fibonacci(k+1)*binomial(n,k); \\ G. C. Greubel, Jul 11 2019
-
Sage
[[fibonacci(k+1)*binomial(n,k) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Jul 11 2019
Formula
T(n,k) = 2*T(n-1,k) + T(n-1,k-1) - T(n-2,k) - T(n-2,k-1) + T(n-2,k-2), T(0,0) = T(1,0) = T(1,1) = 1 and T(n,k) = 0 if k<0 or if k>n. - Philippe Deléham, Mar 26 2012
G.f. (-1+x)/(-1+2*x+x*y-x^2*y+x^2*y^2-x^2). - R. J. Mathar, Aug 11 2015
From G. C. Greubel, Oct 30 2019: (Start)
T(n, k) = binomial(n, k)*Fibonacci(k+1).
Sum_{k=0..n} T(n,k) = Fibonacci(2*n+1).
Sum_{k=0..n} (-1)^k*T(n,k) = Fibonacci(n-1). (End)
Extensions
Offset set to 0 by Alois P. Heinz, Aug 11 2015
Comments