cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A094492 Primes p such that 2^j+p^j are primes for j=0,1,4,16.

Original entry on oeis.org

179, 461, 521, 1877, 4259, 9767, 30389, 33071, 33329, 93701, 120077, 124247, 145547, 163481, 181871, 245627, 344171, 345731, 487427, 492671, 522281, 598187, 700199, 709739, 736061, 769259, 833717, 955709, 966869, 1009649, 1030739
Offset: 1

Views

Author

Labos Elemer, Jun 01 2004

Keywords

Comments

Primes of 2^j+p^j form are a generalization of Fermat-primes. 1^j is replaced by p^j. This is strongly supported by the observation that corresponding j-exponents are apparently powers of 2 like for the 5 known Fermat primes. See A094473-A094491.

Examples

			For j=0 1+1=2 is prime; other conditions are:
because of p^1+2=prime; 3rd and 4th conditions are as
follows: prime=p^4+16 and prime=65536+p^16.
		

Crossrefs

Programs

  • Mathematica
    {ta=Table[0, {100}], u=1}; Do[s0=2;s1=2+Prime[j]^1;s8=16+Prime[j]^4;s16=65536+Prime[j]^16 If[PrimeQ[s0]&&PrimeQ[s4]&&PrimeQ[s8]&&PrimeQ[s128], Print[{j, Prime[j]}];ta[[u]]=Prime[j];u=u+1], {j, 1, 1000000}]
    With[{j={0,1,4,16}},Select[Prime[Range[81000]],And@@PrimeQ[2^j+#^j]&]] (* Harvey P. Dale, Oct 17 2011 *)