A094492 Primes p such that 2^j+p^j are primes for j=0,1,4,16.
179, 461, 521, 1877, 4259, 9767, 30389, 33071, 33329, 93701, 120077, 124247, 145547, 163481, 181871, 245627, 344171, 345731, 487427, 492671, 522281, 598187, 700199, 709739, 736061, 769259, 833717, 955709, 966869, 1009649, 1030739
Offset: 1
Keywords
Examples
For j=0 1+1=2 is prime; other conditions are: because of p^1+2=prime; 3rd and 4th conditions are as follows: prime=p^4+16 and prime=65536+p^16.
Programs
-
Mathematica
{ta=Table[0, {100}], u=1}; Do[s0=2;s1=2+Prime[j]^1;s8=16+Prime[j]^4;s16=65536+Prime[j]^16 If[PrimeQ[s0]&&PrimeQ[s4]&&PrimeQ[s8]&&PrimeQ[s128], Print[{j, Prime[j]}];ta[[u]]=Prime[j];u=u+1], {j, 1, 1000000}] With[{j={0,1,4,16}},Select[Prime[Range[81000]],And@@PrimeQ[2^j+#^j]&]] (* Harvey P. Dale, Oct 17 2011 *)
Comments