A094494 Primes p such that 2^j+p^j are primes for j=0,2,4,8.
6203, 16067, 72367, 105653, 179743, 323903, 1005467, 1040113, 1276243, 1331527, 1582447, 1838297, 1894873, 2202433, 2314603, 2366993, 2369033, 2416943, 2533627, 2698697, 2804437, 2806613, 2823277, 2826337, 2851867, 2888693, 3911783, 4217617, 4432837, 4475473
Offset: 1
Keywords
Examples
Conditions mean 2,p^2+4,16+p^4,256+p^8 are all primes.
Links
- Robert Israel, Table of n, a(n) for n = 1..400
Programs
-
Maple
p:= 2: count:= 0: Res:= NULL: while count < 30 do p:= nextprime(p); if isprime(4+p^2) and isprime(16+p^4) and isprime(256+p^8) then count:= count+1; Res:= Res, p; fi od: Res; # Robert Israel, Jul 17 2018
-
Mathematica
{ta=Table[0, {100}], u=1}; Do[s0=2;s2=4+Prime[j]^2;s2=16+Prime[j]^4;s8=256+Prime[j]^8 If[PrimeQ[s0]&&PrimeQ[s2]&&PrimeQ[s4]&&PrimeQ[s8], Print[{j, Prime[j]}];ta[[u]]=Prime[j];u=u+1], {j, 1, 1000000}] Select[Prime[Range[210000]],AllTrue[Table[2^j+#^j,{j,{0,2,4,8}}], PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Jul 13 2017 *)
Comments