cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A094494 Primes p such that 2^j+p^j are primes for j=0,2,4,8.

Original entry on oeis.org

6203, 16067, 72367, 105653, 179743, 323903, 1005467, 1040113, 1276243, 1331527, 1582447, 1838297, 1894873, 2202433, 2314603, 2366993, 2369033, 2416943, 2533627, 2698697, 2804437, 2806613, 2823277, 2826337, 2851867, 2888693, 3911783, 4217617, 4432837, 4475473
Offset: 1

Views

Author

Labos Elemer, Jun 01 2004

Keywords

Comments

Primes of 2^j+p^j form are a generalization of Fermat-primes. 1^j is replaced by p^j. This is strongly supported by the observation that corresponding j-exponents are apparently powers of 2 like for the 5 known Fermat primes. See A094473-A094491.

Examples

			Conditions mean 2,p^2+4,16+p^4,256+p^8 are all primes.
		

Crossrefs

Programs

  • Maple
    p:= 2: count:= 0: Res:= NULL:
    while count < 30 do
      p:= nextprime(p);
      if isprime(4+p^2) and isprime(16+p^4) and isprime(256+p^8) then
        count:= count+1;
        Res:= Res, p;
      fi
    od:
    Res; # Robert Israel, Jul 17 2018
  • Mathematica
    {ta=Table[0, {100}], u=1}; Do[s0=2;s2=4+Prime[j]^2;s2=16+Prime[j]^4;s8=256+Prime[j]^8 If[PrimeQ[s0]&&PrimeQ[s2]&&PrimeQ[s4]&&PrimeQ[s8], Print[{j, Prime[j]}];ta[[u]]=Prime[j];u=u+1], {j, 1, 1000000}]
    Select[Prime[Range[210000]],AllTrue[Table[2^j+#^j,{j,{0,2,4,8}}], PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Jul 13 2017 *)
Showing 1-1 of 1 results.