cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A094473 Smallest prime factor of 2^n+3^n.

Original entry on oeis.org

5, 13, 5, 97, 5, 13, 5, 17, 5, 13, 5, 97, 5, 13, 5, 3041, 5, 13, 5, 41, 5, 13, 5, 17, 5, 13, 5, 97, 5, 13, 5, 1153, 5, 13, 5, 97, 5, 13, 5, 17, 5, 13, 5, 89, 5, 13, 5, 193, 5, 13, 5, 97, 5, 13, 5, 17, 5, 13, 5, 41, 5, 13, 5, 769, 5, 13, 5, 97, 5, 13, 5, 17, 5, 13, 5
Offset: 1

Views

Author

Labos Elemer, Jun 02 2004

Keywords

Comments

If n = 4*k+1 or 4*k+3 then 2^n+3^n is divisible by 5.
If n = 4*k+2 then 2^n+3^n is divisible by 13.
Case n = 4*k including especially n = 2^j cannot be discussed with elementary tools and primality of 2^n+3^n remains open.
a(n) = 17 for n == 8 (mod 16). - Bruno Berselli, Dec 23 2019

Crossrefs

Programs

  • GAP
    List([1..80],n->Factors(2^n+3^n)[1]); # Muniru A Asiru, Nov 01 2018
    
  • Magma
    [Min(PrimeFactors(2^n+3^n)): n in[1..100]]; // Vincenzo Librandi, Dec 23 2019
    
  • Magma
    [PrimeFactors(2^n+3^n)[1]: n in[1..600]]; // Bruno Berselli, Dec 23 2019
  • Mathematica
    mif[x_]:=Part[Flatten[FactorInteger[x]], 1] Table[mif[2^w+3^w], {w, 1, 75}]
    FactorInteger[#][[1,1]]&/@Table[2^n+3^n,{n,80}] (* Harvey P. Dale, Mar 26 2019 *)
  • PARI
    a(n)=factor(2^n+3^n)[1,1] \\ Charles R Greathouse IV, Apr 29 2015
    
  • PARI
    A094473(n) = { my(k=(2^n+3^n)); forprime(p=2,k,if(!(k%p),return(p))); }; \\ Antti Karttunen, Nov 01 2018
    

Formula

a(n) = A020639(A007689(n)). - Antti Karttunen, Nov 01 2018

A094498 Least prime factor of 2^(4*n) + 3^(4*n) = 16^n + 81^n.

Original entry on oeis.org

97, 17, 97, 3041, 41, 17, 97, 1153, 97, 17, 89, 193, 97, 17, 41, 769, 97, 17, 97, 3041, 97, 17, 97, 1153, 41, 17, 97, 3041, 97, 17, 97, 257, 89, 17, 41, 193, 97, 17, 97, 1153, 97, 17, 97, 353, 41, 17, 97, 769, 97, 17
Offset: 1

Views

Author

Labos Elemer, Jun 02 2004

Keywords

Crossrefs

Programs

  • Mathematica
    mif[x_]:=Part[Flatten[FactorInteger[x]], 1] Table[mif[16^w+81^w], {w, 1, 20}]
    Table[FactorInteger[16^n+81^n][[1,1]],{n,50}] (* Harvey P. Dale, Jun 02 2014 *)
  • PARI
    a(n) = vecmin(factor(16^n + 81^n)[,1]); \\ Michel Marcus, Oct 15 2019

Extensions

More terms from Harvey P. Dale, Jun 02 2014
Name corrected by Chai Wah Wu, Oct 14 2019
Showing 1-2 of 2 results.