cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A094503 Triangle read by rows: coefficients d(n,k) of Andre polynomials D(x,n) = Sum_{k>0} d(n,k)*x^k.

Original entry on oeis.org

1, 1, 1, 1, 1, 4, 1, 11, 4, 1, 26, 34, 1, 57, 180, 34, 1, 120, 768, 496, 1, 247, 2904, 4288, 496, 1, 502, 10194, 28768, 11056, 1, 1013, 34096, 166042, 141584, 11056, 1, 2036, 110392, 868744, 1372088, 349504, 1, 4083, 349500, 4247720, 11204160, 6213288
Offset: 1

Views

Author

Philippe Deléham, Jun 09 2004

Keywords

Comments

a(n,k) is the number of increasing 0-1-2 trees on [n] with k leaves. An increasing 0-1-2 tree on [n] is an unordered tree on [n], rooted at 1, in which each vertex has <= 2 children and the labels increase along each path from the root. Example: a(4,2)=4 counts the trees with edges as follows, {1->2->3,1->4}, {1->2->4,1->3}, {1->2->4,2->3}, {1->3->4,1->2}. - David Callan, Oct 24 2004

Examples

			Triangle begins:
  1
  1
  1  1
  1  4
  1 11   4
  1 26  34
  1 57 180 34
  ...
From _Peter Bala_, Jun 26 2012: (Start)
Recurrence equation: T(6,3) = 3*T(5,3) + 2*T(5,2) = 3*4 + 2*11 = 34.
n = 4: the 5 weighted non-plane increasing 0-1-2 trees on 4 vertices are
.........................................................
..4......................................................
..|......................................................
..3............4............4.............3.......3...4..
..|.........../............/............./.........\./...
..2......2...3........3...2.........4...2........(t)2....
..|.......\./..........\./...........\./............|....
..1.....(t)1.........(t)1..........(t)1.............1....
.........................................................
Hence row polynomial R(4,t) = (1 + 4*t)*t.
(End)
		

Crossrefs

Programs

  • Maple
    A094503:=proc(n,k) options remember: if(n=1 and k=1) then RETURN(1) elif(1<=k and k<=floor((n+1)/2) and n>=1) then RETURN(k*A094503(n-1,k)+(n+2-2*k)*A094503(n-1,k-1)) else RETURN(0) fi: end; seq(seq(A094503(n,k),k=1..floor((n+1)/2)),n=1..14);
  • Mathematica
    t[1, 1] = 1; t[n_, k_] /; Not[1 <= k <= (n+1)/2] = 0; t[n_, k_] := t[n, k] = k*t[n-1, k] + (n+2-2*k)*t[n-1, k-1]; Table[t[n, k], {n, 0, 13}, {k, 1, (n + 1)/2}] // Flatten (* Jean-François Alcover, Nov 22 2012, after Maple *)
  • Sage
    def p(n) :
        s = var('s'); u = sqrt(s^2-2)
        egf = u*x-2*ln((exp(u*x)*(1-s/u)+s/u+1)/2)
        return factorial(n+2)*egf.series(x,n+4).coefficient(x,n+2)
    def A094503_row(n) : return [p(n).coefficient(s,n-2*i) for i in (0..n//2)]
    for n in (0..6): print(A094503_row(n)) # Peter Luschny, Jul 01 2012

Formula

D(1, n) = A000111(n), Euler or up/down numbers. D(1/2, n) = A000142(n)*(1/2)^n. D(1/4, n) = A080795(n)*(1/4)^n.
From Peter Bala, Jun 26 2012: (Start):
Recurrence equation: T(n,k) = k*T(n-1,k) + (n+2-2*k)*T(n-1,k-1) for n >= 1 and 1 <= k <= floor((n+1)/2).
Let r(t) = sqrt(1-2*t) and w(t) = (1-r(t))/(1+r(t)). The e.g.f. is F(t,z) = r(t)*(1 + w(t)*exp(r(t)*z))/(1 - w(t)*exp(r(t)*z)) = 1 + t*z + t*z^2/2! + (t+t^2)*z^3/3! + (t+4*t^2)*z^4/4! + ... (Foata and Han, 2001, section 7).
Note that (F(2*t,z) - 1)/(2*t) is the e.g.f. for A101280.
The modified e.g.f. A(t,z) := (F(t,z) - 1)/t = z + z^2/2! + (1+t)*z^3/3! + (1+4*t)*z^4/4! + ... satisfies the autonomous partial differential equation dA/dz = 1 + A + 1/2*t*A^2 with A(t,0) = 1. It follows that the inverse function A(t,z)^(-1) may be expressed as an integral: A(t,z)^(-1) = Integral_{x = 0..z} 1/(1+x+1/2*t*x^2) dx.
Applying [Dominici, Theorem 4.1] to invert the integral gives the following method for calculating the row polynomials R(n,t) of the table: let f(t,x) = 1+x+1/2*t*x^2 and let D be the operator f(t,x)*d/dx. Then R(n+1,t) = t*D^n(f(t,x)) evaluated at x = 0.
By Bergeron et al., Theorem 1, the shifted row polynomial 1/t*R(n,t) is the generating function for rooted non-plane increasing 0-1-2 trees on n vertices, where the vertices of outdegree 2 have weight t and all other vertices have weight 1. An example is given below.
1/(2*t)*(1+t)^(n+1)*R(n,2*t/(1+t)^2) = the n-th Eulerian polynomial of A008292. For example, n = 5 gives 1/(2*t)*(1+t)^6*R(5,2*t/(1+t)^2) = 1 + 26*t + 66*t^2 + 26*t^3 + t^4.
A000142(n) = 2^n*R(n,1/2); A080795(n) = 4^n*R(n,1/4);
A000670(n) = 3/4*3^n*R(n,4/9); A004123(n+1) = 5/6*5^n*R(n,12/25).
(End)
There is a second family of polynomials which also matches the data and is different from the André polynomials as defined by Foata and Han (2001), formula 3.5. Let u = sqrt(s^2-2) and F(s,x) = u*x-2*log((exp(u*x)*(1-s/u)+s/u+1)/2), then for n>=0 the sequence of polynomials p_{n}(s) = (n+2)!*[x^(n+2)]F(s,x) starts 1, s, s^2+1, s^3+4*s, s^4+11*s^2+4, s^5+26*s^3+34*s, s^6+57*s^4+180*s^2+34, ... and the nonzero coefficients of these polynomials in descending order coincide with the sequence a(n). p_{n}(0) is an aerated version of the reduced tangent numbers, p_{2*n}(0) = A002105(n+1) for n>=0. In contrast, the André polynomials vanish at t=0 except for n=0. - Peter Luschny, Jul 01 2012
T(n,k) = A008303(n,k)/2^(n-k). - Ammar Khatab, Aug 17 2024