cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A094533 Number of one-element transitions among partitions of the integer n for labeled parts.

Original entry on oeis.org

0, 0, 2, 8, 22, 48, 98, 178, 316, 524, 856, 1334, 2066, 3084, 4578, 6626, 9530, 13434, 18854, 26022, 35764, 48520, 65526, 87550, 116536, 153674, 201906, 263258, 342006, 441366, 567754, 726032, 925588, 1174010, 1484664, 1869072, 2346586, 2934044
Offset: 0

Views

Author

Thomas Wieder, Jun 05 2004

Keywords

Examples

			In the labeled case we have 22 one-element transitions among all partitions of n=4:
[1,1,1,1] -> [1,1,2] arises 6 times (the first 1 added to the second 1 gives 2, the first 1 added to the third 1 gives 2, the first 1 added to the fourth 1 gives 2, the second 1 added to the third 1 gives 2, the second 1 added to the fourth 1 gives 2, the third 1 added to the fourth 1 gives 2),
[1,1,2] -> [2,2] arises 1 times,
[1,1,2] -> [1,3] arises 2 times,
[2,2] -> [1,3] arises 1 times,
[1,3] -> [4] arises 1 time,
which gives 11 upwards transitions and 22 transitions in total if we include downwards transitions.
n=4: partition number p=1 is [1,1,1,1],
parts d(1,1)=1, d(2,1)=1 contribute 1,
parts d(1,1)=1, d(3,1)=1 contribute 1,
etc...
parts d(3,1)=1, d(4,1)=1 contribute 1,
(in total 6 contributions by [1,1,1,1]);
partition number p=2 is [1,1,2],
parts d(1,2)=1, d(2,2)=1 contribute 1,
parts d(1,2)=1, d(3,2)=2 contribute 1,
parts d(2,2)=1, d(3,2)=2 contribute 1;
partition number p=3 is [2,2],
parts d(1,3)=2, d(2,3)=2 contribute 1;
partition number p=4 is [1,3],
parts d(1,4)=1, d(2,4)=3 contribute 1;
partition number p=5 is [4],
part d(1,5)=4 contributes 0;
		

Crossrefs

Cf. A093695.

Programs

  • Maple
    main := proc(n::integer) local a,ndxp,ListOfPartitions,APartition,PartOfAPartition; with(combinat): ListOfPartitions:=partition(n); a:=0; for ndxp from 1 to nops(ListOfPartitions) do APartition := ListOfPartitions[ndxp]; a := a + nops(APartition)^2 - nops(APartition); end do; print("n, a(n):",n,a); end proc;
    # second Maple program:
    b:= proc(n, i) option remember; local f, g;
          if n=0 then [1, [1]] elif i<1 then [0, [0]]
        else f:= b(n, i-1); g:= `if`(i>n, [0, [0]], b(n-i, i));
             [f[1]+g[1], zip((x, y)-> x+y, f[2], [0, g[2][]], 0)]
          fi
        end:
    a:= n-> (l-> add(l[t+1]*t*(t-1), t=1..nops(l)-1))(b(n$2)[2]):
    seq(a(n), n=0..50);  # Alois P. Heinz, Apr 05 2012
  • Mathematica
    a[n_] := Block[{p = IntegerPartitions[n], l = PartitionsP[n]}, Sum[ Length[p[[k]]]^2 - Length[p[[k]]], {k, l}]]; Table[ a[n], {n, 0, 37}] (* Robert G. Wilson v, Jul 13 2004, updated by Jean-François Alcover, Jan 29 2014 *)
    Simplify@Table[SeriesCoefficient[(Log[1 - x]^2 - Log[1 - x] Log[x] + QPolyGamma[1, x] (2 Log[1 - x] - Log[x] + QPolyGamma[1, x]) + QPolyGamma[1, 1, x])/(QPochhammer[x] Log[x]^2), {x, 0, n}], {n, 0, 40}] (* Vladimir Reshetnikov, Nov 21 2016 *)
    Simplify@Table[SeriesCoefficient[2 q^2/QPochhammer[q + a, q], {a, 0, 2}, {q, 0, n}], {n, 0, 40}] (* Vladimir Reshetnikov, Nov 22 2016 *)

Formula

a(n) = Sum_p=1^P(n) Sum_i=1^D(p) Sum_j=i^D(p) 1 [subject to: d(i, p) <= d(j, p) ]; P(n) = number of partitions of n, D(p) = number of parts in partition p, d(i, p) and d(j, p) = parts number i and j in partition p of integer n.
a(n) = Sum_i=1^P(n) p(i, n)^2 - p(i, n), where P(n) is the number of integer partitions of n and p(i, n) is the number of parts of the i-th partition of n.

Extensions

More terms from Robert G. Wilson v, Jul 13 2004