A094534 Centered hexamorphic numbers: the k-th centered hexagonal number, 3k(k-1)+1, ends in k.
1, 7, 17, 51, 67, 167, 251, 417, 501, 667, 751, 917, 1251, 1667, 5001, 5417, 6251, 6667, 10417, 16667, 50001, 56251, 60417, 66667, 166667, 260417, 406251, 500001, 666667, 760417, 906251, 1406251, 1666667, 5000001, 5260417, 6406251, 6666667, 16666667
Offset: 1
Examples
417 is in the sequence because if n=417, 3n(n-1)+1=520417, which ends in 417.
Links
- Robert Munafo, Sequence A094534, Centered Hexamorphic, or Automorphic Hexagonal, Numbers
- Cliff Pickover, Centered Hexamorphic Numbers.
Programs
-
PARI
isok(n) = {my(m = 3*n*(n-1)+1); (m - n) % 10^#Str(n) == 0; } \\ Michel Marcus, Jun 21 2018
Formula
10^(d-1) <= n < 10^d; 3n(n-1)+1 == n mod 10^d
Extensions
Name changed by Robert Dawson, Jun 20 2018
Comments