A094565 Triangle read by rows: binary products of Fibonacci numbers.
1, 2, 3, 5, 6, 8, 13, 15, 16, 21, 34, 39, 40, 42, 55, 89, 102, 104, 105, 110, 144, 233, 267, 272, 273, 275, 288, 377, 610, 699, 712, 714, 715, 720, 754, 987, 1597, 1830, 1864, 1869, 1870, 1872, 1885, 1974, 2584, 4181, 4791, 4880, 4893, 4895, 4896, 4901, 4935, 5168, 6765
Offset: 1
Examples
Triangle begins: 1; 2, 3; 5, 6 8; 13, 15, 16, 21; 34, 39, 40, 42, 55; 89, 102, 104, 105, 110, 144; ...
Links
- G. C. Greubel, Rows n = 1..100 of triangle, flattened
- Clark Kimberling, Orderings of products of Fibonacci numbers, Fibonacci Quarterly 42:1 (2004), pp. 28-35.
Programs
-
GAP
Flat(List([1..12], n-> List([1..n], k-> Fibonacci(2*k)*Fibonacci(2*n-2*k+1) ))); # G. C. Greubel, Jul 15 2019
-
Magma
[Fibonacci(2*k)*Fibonacci(2*n-2*k+1): k in [1..n], n in [1..12]]; // G. C. Greubel, Jul 15 2019
-
Mathematica
Table[Fibonacci[2*k]*Fibonacci[2*n-2*k+1], {n,12}, {k,n}]//Flatten (* G. C. Greubel, Jul 15 2019 *)
-
PARI
row(n) = vector(n, k, fibonacci(2*k)*fibonacci(2*n-2*k+1)); tabl(nn) = for(n=1, nn, print(row(n))); \\ Michel Marcus, May 03 2016
-
Sage
[[fibonacci(2*k)*fibonacci(2*n-2*k+1) for k in (1..n)] for n in (1..12)] # G. C. Greubel, Jul 15 2019
Formula
Row n: F(2)F(2n-1), F(4)F(2n-3), ..., F(2n)F(1).
Comments