0, 1, 2, 3, 5, 8, 7, 11, 17, 26, 15, 23, 35, 53, 80, 31, 47, 71, 107, 161, 242, 63, 95, 143, 215, 323, 485, 728, 127, 191, 287, 431, 647, 971, 1457, 2186, 255, 383, 575, 863, 1295, 1943, 2915, 4373, 6560, 511, 767, 1151, 1727, 2591, 3887, 5831, 8747, 13121
Offset: 0
Triangle starts:
n \ m 0 1 2 3 4 5 6 7 8 9 10 ...
0: 0
1: 1 2
2: 3 5 8
3: 7 11 17 26
4: 15 23 35 53 80
5: 31 47 71 107 161 242
6: 63 95 143 215 323 485 728
7: 127 191 287 431 647 971 1457 2186
8: 255 383 575 863 1295 1943 2915 4373 6560
9: 511 767 1151 1727 2591 3887 5831 8747 13121 19682
10: 1023 1535 2303 3455 5183 7775 11663 17495 26243 39365 59048
... (reformatted (and extended) by _Wolfdieter Lang_, May 04 2022)
For a 3-d cube, at a corner, the number of horizontal and vertical neighbors is 3, hence m = 3-3 = 0.
Along the edge, the number of horizontal and vertical neighbors is 4, hence m = 4-3 = 1.
In a face, the number of horizontal and vertical neighbors is 5, hence m = 5-3 = 2.
In the interior, the number of horizontal and vertical neighbors is 6, hence m = 6-3 = 3.
T(3,2) = 17 because a cell on the face of a 3-d cube has 17 neighbors.
Comments