cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A094624 Expansion of g.f. x*(1+11*x+x^2)/((1-x)*(1+x)*(1-10*x^2)).

Original entry on oeis.org

0, 1, 11, 12, 121, 122, 1221, 1222, 12221, 12222, 122221, 122222, 1222221, 1222222, 12222221, 12222222, 122222221, 122222222, 1222222221, 1222222222, 12222222221, 12222222222, 122222222221, 122222222222, 1222222222221, 1222222222222, 12222222222221
Offset: 0

Views

Author

Paul Barry, May 15 2004

Keywords

Comments

Previous name: "Sequence whose n-th term digits sum to n."
n-th term digits are reversals of A094623(n).

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{0, 11, 0, -10}, {0, 1, 11, 12}, 30] (* Paolo Xausa, Feb 22 2024 *)
  • PARI
    concat(0, Vec(x*(1+11*x+x^2)/((1-x)*(1+x)*(1-10*x^2)) + O(x^40))) \\ Colin Barker, Dec 01 2015

Formula

a(n) = 10^(n/2)*(11/18 + 11*sqrt(10)/180 - (11*sqrt(10)/180 - 11/18)(-1)^n) - 13/18 - (-1)^n/2.
From Colin Barker, Dec 01 2015: (Start)
a(n) = 11*a(n-2) - 10*a(n-4) for n > 3.
G.f.: x*(1+11*x+x^2) / ((1-x)*(1+x)*(1-10*x^2)). (End)
E.g.f.: (110*(cosh(sqrt(10)*x) - cosh(x)) + 11*sqrt(10)*sinh(sqrt(10)*x) - 20*sinh(x))/90. - Stefano Spezia, Feb 21 2024