cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A094626 Expansion of x*(1+x)/((1-x)*(1-10*x^2)).

Original entry on oeis.org

0, 1, 2, 12, 22, 122, 222, 1222, 2222, 12222, 22222, 122222, 222222, 1222222, 2222222, 12222222, 22222222, 122222222, 222222222, 1222222222, 2222222222, 12222222222, 22222222222, 122222222222, 222222222222, 1222222222222, 2222222222222, 12222222222222
Offset: 0

Views

Author

Paul Barry, May 15 2004

Keywords

Comments

Previous name: Sequence whose n-th term digits sum to n.
a(n) is the smallest integer with digits from {0,1,2} having digit sum n. Namely the base-10 reading of the ternary string of A062318. - Jason Kimberley, Nov 01 2011
a(n) is the Moore lower bound on the order of an (11,n)-cage. - Jason Kimberley, Oct 18 2011

Crossrefs

Moore lower bound on the order of a (k,g) cage: A198300 (square); rows: A000027 (k=2), A027383 (k=3), A062318 (k=4), A061547 (k=5), A198306 (k=6), A198307 (k=7), A198308 (k=8), A198309 (k=9), A198310 (k=10), this sequence (k=11); columns: A020725 (g=3), A005843 (g=4), A002522 (g=5), A051890 (g=6), A188377 (g=7). - Jason Kimberley, Nov 01 2011

Programs

  • Mathematica
    LinearRecurrence[{1, 10, -10}, {0, 1, 2}, 30] (* Paolo Xausa, Feb 21 2024 *)
  • PARI
    concat(0, Vec(x*(1+x)/((1-x)*(1-10*x^2)) + O(x^30))) \\ Colin Barker, Mar 17 2017

Formula

G.f.: x*(1+x)/((1-x)*(1-10*x^2)).
a(n) = 10^(n/2)*(11*sqrt(10)/180 + 1/9 - (11*sqrt(10)/180 - 1/9)*(-1)^n) - 2/9.
From Colin Barker, Mar 17 2017: (Start)
a(n) = 2*(10^(n/2) - 1)/9 for n even.
a(n) = (11*10^((n-1)/2) - 2)/9 for n odd. (End)
E.g.f.: (20*(cosh(sqrt(10)*x) - cosh(x) - sinh(x)) + 11*sqrt(10)*sinh(sqrt(10)*x))/90. - Stefano Spezia, Apr 09 2022

A094623 Expansion of g.f. x*(1+10*x)/((1-x)*(1-10*x^2)).

Original entry on oeis.org

0, 1, 11, 21, 121, 221, 1221, 2221, 12221, 22221, 122221, 222221, 1222221, 2222221, 12222221, 22222221, 122222221, 222222221, 1222222221, 2222222221, 12222222221, 22222222221, 122222222221, 222222222221, 1222222222221
Offset: 0

Views

Author

Paul Barry, May 15 2004

Keywords

Comments

Previous name was: Sequence whose n-th term digits sum to n.
n-th term digits are reversals of A094624(n).

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{1, 10, -10}, {0, 1, 11}, 30] (* Paolo Xausa, Feb 22 2024 *)

Formula

G.f.: x*(1+10*x)/((1-x)*(1-10*x^2)).
a(n) = (10^(n/2)/2)*(11/9 + 2*sqrt(10)/9 - (2*sqrt(10)/9 - 11/9)*(-1)^n) - 11/9.
E.g.f.: (11*(cosh(sqrt(10)*x) - cosh(x)) + 2*sqrt(10)*sinh(sqrt(10)*x) - 11*sinh(x))/9. - Stefano Spezia, Feb 21 2024

A094625 Expansion of g.f. x*(2+22*x+11*x^2)/((x-1)*(1+x)*(10*x^2-1)).

Original entry on oeis.org

0, 2, 22, 33, 242, 343, 2442, 3443, 24442, 34443, 244442, 344443, 2444442, 3444443, 24444442, 34444443, 244444442, 344444443, 2444444442, 3444444443, 24444444442, 34444444443, 244444444442, 344444444443, 2444444444442
Offset: 0

Views

Author

Paul Barry, May 15 2004

Keywords

Comments

Previous name: Palindromic sequence whose n-th term digits sum to 2n.

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{0, 11, 0, -10}, {0, 2, 22, 33}, 30] (* Paolo Xausa, Feb 22 2024 *)

Formula

a(n) = 10^(n/2)*(31*sqrt(10)/180 + 11/9 - (31*sqrt(10)/180 - 11/9)*(-1)^n) - (-1)^n/2 - 35/18;
a(n) = A094623(n) + A094624(n).
G.f.: x*(2+22*x+11*x^2) / ( (x-1)*(1+x)*(10*x^2-1) ). - R. J. Mathar, Nov 27 2014
E.g.f.: (220*(cosh(sqrt(10)*x) - cosh(x)) + 31*sqrt(10)*sinh(sqrt(10)*x) - 130*sinh(x))/90. - Stefano Spezia, Feb 21 2024
Showing 1-3 of 3 results.