cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A094664 Row sums of triangle A094344.

Original entry on oeis.org

1, 1, 2, 7, 38, 286, 2756, 32299, 444998, 7038898, 125620652, 2495811814, 54618201884, 1305184303996, 33812846036552, 943878836768947, 28242424937855558, 901709392642750186, 30597227032818965276, 1099566630423067201234, 41718229482624755005748
Offset: 0

Views

Author

Philippe Deléham, Jun 06 2004

Keywords

Examples

			a(3) = 7, a(4) = 38, since top row of M^3 = (7, 7, 9, 15) with 38 = (7 + 7 + 9 + 15).
		

Programs

  • Mathematica
    nmax = 20; CoefficientList[Series[1/Fold[(1 - #2/#1) &, 1, Reverse[(2*Range[nmax + 1] - 2*Floor[Range[nmax + 1]/2] - 1)*x]], {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 05 2017 *)
  • PARI
    {a(n)=local(CF=1+x*O(x^n)); for(k=0, n, CF=1/(1-(2*n-2*k+1)*x/(1-(2*n-2*k+1)*x*CF))); polcoeff(CF, n, x)} /* Paul D. Hanna, Sep 17 2011 */
    
  • PARI
    {a(n)=local(A=1+x);for(i=1,n,A=1+x*(2*A-A^2)+2*x^2*A'+x*O(x^n));polcoeff(A,n)} \\ Paul D. Hanna, Mar 09 2013

Formula

a(n) = Sum_{k = 0..n} A094344(n, k).
From Gary W. Adamson, Jul 26 2011: (Start)
a(n) = upper left term in M^n, a(n+1) = sum of top row terms in M^n; M = the following infinite square production matrix:
1, 1, 0, 0, 0, ...
1, 1, 3, 0, 0, ...
1, 1, 1, 5, 0, ...
1, 1, 1, 1, 7, ...
... (End)
G.f.: 1/(1 - x/(1 - x/(1 - 3*x/(1 - 3*x/(1 - 5*x/(1 - 5*x/(1 - 7*x/(1 - 7*x/(1-...))))))))) (continued fraction). - Paul D. Hanna, Sep 17 2011
G.f. A(x) satisfies A(x) = 1 + x*(2*A(x)-A(x)^2) + 2*x^2*A'(x). - Paul D. Hanna, Mar 09 2013
From Sergei N. Gladkovskii, Oct 15 2012 - Aug 14 2013: (Start)
Continued fractions:
G.f.: 1/U(0) where U(k) = 1 - x*(2*k+1)/(1 - x*(2*k+1)/U(k+1)).
G.f.: 2 - 1/Q(0) where Q(k) = 1 - x*(2*k-1)/(1 - x*(2*k+3)/Q(k+1) ).
G.f.: Q(0)/x - 1/x, where Q(k) = 1 - x*(2*k-1)/(1 - x*(2*k+1)/Q(k+1)).
G.f.: 2/G(0), where G(k) = 1 + 1/(1 - x*(4*k+2)/(x*(4*k+2)-1+ x*(4*k+2)/G(k+1))).
G.f.: G(0)/2/x - 1/x + 2, where G(k) = 1 + 1/(1 - 2*x*(2*k+1)/(2*x*(2*k+1) - 1 + 2*x*(2*k-1)/G(k+1))).
G.f.: G(0), where G(k) = 1-x*(2*k+1)/(x*(2*k+1)-1/(1-x*(2*k+1)/(x*(2*k+1)- 1/G(k+1)))).
G.f.: 2 - 1/x - G(0)/x, where G(k) = 2*x - 2*x*k - 1 - x*(2*k-1)/G(k+1).
(End)
a(n) ~ 2^n * (n-1)! / Pi. - Vaclav Kotesovec, Sep 05 2017
Conjecture: a(n) = R(n-1, 0) for n > 0 with a(0) = 1 where R(n, q) = (2*q + 1)*R(n-1, q+1) + Sum_{j=0..q} R(n-1, j) for n > 0, q >= 0 with R(0, q) = 1 for q >= 0. - Mikhail Kurkov, Jun 19 2023