cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A094707 Partial sums of repeated Fibonacci sequence.

Original entry on oeis.org

0, 0, 1, 2, 3, 4, 6, 8, 11, 14, 19, 24, 32, 40, 53, 66, 87, 108, 142, 176, 231, 286, 375, 464, 608, 752, 985, 1218, 1595, 1972, 2582, 3192, 4179, 5166, 6763, 8360, 10944, 13528, 17709, 21890, 28655, 35420, 46366, 57312, 75023, 92734, 121391, 150048, 196416
Offset: 0

Views

Author

Paul Barry, May 21 2004

Keywords

Comments

Equals row sums of triangle A139147 starting with "1". - Gary W. Adamson, Apr 11 2008

Crossrefs

Programs

  • Magma
    [Fibonacci(Floor((n+6)/2))*((n+1) mod 2) + 2*Fibonacci(Floor((n+3)/2))*(n mod 2) - 2: n in [0..60]]; // G. C. Greubel, Feb 12 2023
    
  • Mathematica
    LinearRecurrence[{1,1,-1,1,-1}, {0,0,1,2,3}, 50] (* Jean-François Alcover, Nov 18 2017 *)
  • SageMath
    def A094707(n): return fibonacci((n+6)//2) - 2 if (n%2==0) else 2*fibonacci((n+3)//2) - 2
    [A094707(n) for n in range(61)] # G. C. Greubel, Feb 12 2023

Formula

G.f. : x^2*(1+x)/((1-x)*(1-x^2-x^4)).
a(n) = a(n-1) + a(n+2) - a(n-3) + a(n-4) - a(n-5).
a(n) = Sum_{k=0..n} Fibonacci(floor(k/2)).
a(n) = -2 - (sqrt(5)/2 - 1/2)^(n/2)*((2*sqrt(5)/5 - 1)*cos(Pi*n/2) + sqrt(4*sqrt(5)/5 - 8/5)*sin(Pi*n/2)) - (sqrt(5)/2 + 1/2)^(n/2)*((sqrt(sqrt(5)/5 + 2/5) - sqrt(5)/5 - 1/2)*(-1)^n - sqrt(sqrt(5)/5 + 2/5) - sqrt(5)/5-1/2).
a(n) = A131524(n) + A131524(n+1). - R. J. Mathar, Jul 07 2011
a(n) = Fibonacci(n/2 +3) - 2 if n even, otherwise a(n) = 2*Fibonacci((n-1)/2 + 2) - 2. - G. C. Greubel, Feb 12 2023