A094707 Partial sums of repeated Fibonacci sequence.
0, 0, 1, 2, 3, 4, 6, 8, 11, 14, 19, 24, 32, 40, 53, 66, 87, 108, 142, 176, 231, 286, 375, 464, 608, 752, 985, 1218, 1595, 1972, 2582, 3192, 4179, 5166, 6763, 8360, 10944, 13528, 17709, 21890, 28655, 35420, 46366, 57312, 75023, 92734, 121391, 150048, 196416
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (1,1,-1,1,-1).
Programs
-
Magma
[Fibonacci(Floor((n+6)/2))*((n+1) mod 2) + 2*Fibonacci(Floor((n+3)/2))*(n mod 2) - 2: n in [0..60]]; // G. C. Greubel, Feb 12 2023
-
Mathematica
LinearRecurrence[{1,1,-1,1,-1}, {0,0,1,2,3}, 50] (* Jean-François Alcover, Nov 18 2017 *)
-
SageMath
def A094707(n): return fibonacci((n+6)//2) - 2 if (n%2==0) else 2*fibonacci((n+3)//2) - 2 [A094707(n) for n in range(61)] # G. C. Greubel, Feb 12 2023
Formula
G.f. : x^2*(1+x)/((1-x)*(1-x^2-x^4)).
a(n) = a(n-1) + a(n+2) - a(n-3) + a(n-4) - a(n-5).
a(n) = Sum_{k=0..n} Fibonacci(floor(k/2)).
a(n) = -2 - (sqrt(5)/2 - 1/2)^(n/2)*((2*sqrt(5)/5 - 1)*cos(Pi*n/2) + sqrt(4*sqrt(5)/5 - 8/5)*sin(Pi*n/2)) - (sqrt(5)/2 + 1/2)^(n/2)*((sqrt(sqrt(5)/5 + 2/5) - sqrt(5)/5 - 1/2)*(-1)^n - sqrt(sqrt(5)/5 + 2/5) - sqrt(5)/5-1/2).
a(n) = Fibonacci(n/2 +3) - 2 if n even, otherwise a(n) = 2*Fibonacci((n-1)/2 + 2) - 2. - G. C. Greubel, Feb 12 2023
Comments