cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A001232 Numbers k such that 9*k = (k written backwards), k > 0.

Original entry on oeis.org

1089, 10989, 109989, 1099989, 10891089, 10999989, 108901089, 109999989, 1089001089, 1098910989, 1099999989, 10890001089, 10989010989, 10999999989, 108900001089, 108910891089, 109890010989, 109989109989, 109999999989, 1089000001089, 1089109891089
Offset: 1

Views

Author

Keywords

Comments

This sequence contains the least n-digit non-palindromic number which is a factor of its reversal. Quotient is always 9. - Lekraj Beedassy, Jun 11 2004. (But it contains many other numbers as well. - N. J. A. Sloane, Jul 02 2013)
Nonzero fixed points of the map which sends x to x - reverse(x) if that is nonnegative, otherwise to x + reverse(x). - Sébastien Dumortier, Nov 05 2006. (Clarified comment, see A124074. - Ray Chandler, Oct 11 2017)
Numbers k such that reversal(k)=reversal(k+reversal(k)). Also numbers k such that reversal(k)=reversal(10*k-reversal(k)). - Farideh Firoozbakht, Jun 11 2010
From M. F. Hasler, Oct 04 2022: (Start)
(1) The first digit of any term must be 1, otherwise multiplication by 9 yields one more digit. For the same reason, no "overflow" must occur from the second to the first digit, so the last digit must be 9.
(2) Continuing the reasoning "from right to left" implies that the trailing nonzero digits must be ...9*89, where 9* means any nonnegative number of consecutive digits 9, preceded by a digit 0, which must be preceded by a digit 1. This implies that the initial and also final digits of any term must be 109*89. We might call a term of this form a "primitive" term. So there is exactly one primitive term b(k) = 11*10^(k-2)-11 with k digits, for all k >= 4.
(3) All terms of the sequence are a "symmetric" concatenation of such b(k)'s, "spaced out" with any number of digits 0, also in a symmetrical way: For any n >= 1, let k = (k[1], ..., k[n]) with k[n+1-j] = k[j] >= 4, and m = (m[1], ..., m[n-1]) (possibly of length 0) with m[n-j] = m[j] >= 0, then N = concat(b(k[j])*10^m[j], 1 <= j < n; k[n]) is a term of the sequence, and this yields all terms of the sequence. (For example, with 1089 we also have 1089{0...0}1089 and 1089,001089,001089, etc.) (End)

Examples

			1089*9 = 9801.
		

References

  • H. Camous, Jouer Avec Les Maths, "Cardinaux Réversibles", Section I, Problem 6, pp. 27, 37-38; Les Editions d'Organisation, Paris, 1984.
  • Alfred S. Posamentier, Math Charmers, Tantalizing Tidbits for the Mind, Prometheus Books, NY, 2003, page 41.
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, under #1089.

Crossrefs

Programs

  • Mathematica
    Rest@Select[FromDigits /@ Tuples[{0, 99}, 11], IntegerDigits[9*#] == Reverse@IntegerDigits[#] &] (* Arkadiusz Wesolowski, Aug 14 2012 *)
    okQ[t_]:=t==Reverse[t]&&First[t]!=0&&Min[Length/@Split[t]]>1; 99#&/@Flatten[Table[ FromDigits/@ Select[Tuples[{0,1},n],okQ],{n,20}]] (* Harvey P. Dale, Jul 03 2013 *)
  • PARI
    isok(n) = 9*n == eval(concat(Vecrev(Str(n)))); \\ Michel Marcus, Feb 21 2015
    
  • PARI
    {A001232_row(n, L(v, s=0)=for(i=1, #v, s*=10^v[i]; i%2 && s+=10^v[i]\900); s)=if(n<4, [], L, Set(apply(L, self()(n, 0)))*99, L=List([[n]]); for(k=4, n\2, listput(L,[k,n-2*k,k]); for(p=0, n\2-k, foreach(self()(n-(k+p)*2, 0), M, listput(L, concat([[k, p], M, [p, k]]))))); L)} \\ List of n-digit terms. - M. F. Hasler, Oct 04 2022
    concat(apply(A001232_row, [1..14]))
    
  • Python
    def A001232_row(n, r=11): # list of n-digit terms
        L = [] if n<4 else [[n]]
        for L1 in range(4, n//2+1):
            L.append([L1, n-2*L1, L1])
            L.extend([L1,L2]+M+[L2,L1] for L2 in range(n//2-1-L1)
                                         for M in A001232_row(n-(L1+L2)*2, 0))
        if not r: return L
        def f(L, s=0):
            for k,L in enumerate(L):
                s *= 10**L
                if not k%2: s += 10**(L-2)-1
            return r*s
        return sorted(map(f, A001232_row(n, 0))) # M. F. Hasler, Oct 04 2022

Formula

Theorem: Terms in this sequence have the form 99*m, where the decimal representation of m contains only 1's and 0's, is palindromic and contains no singleton 1's or 0's. Hence contains Fib(floor(k/2)-1) k-digit terms, k >= 4. - David W. Wilson, Dec 15 1997
a(A094707(n)) = 11*(10^n - 1) = 11*A002283(n) = 99*A002275(n), for n>1. - Lekraj Beedassy, Jun 11 2004. (Restored from history and corrected. - Ray Chandler, Oct 11 2017)
a(n) = 99*A061851(n) = A008918(n)/2. - M. F. Hasler, Oct 06 2022

Extensions

Corrected and extended by David W. Wilson, Aug 15 1996, Dec 15 1997
a(20)-a(21) from Arkadiusz Wesolowski, Aug 14 2012
a(1..10^4) in b-file double-checked with independent code by M. F. Hasler, Oct 04 2022

A103609 Fibonacci numbers repeated (cf. A000045).

Original entry on oeis.org

0, 0, 1, 1, 1, 1, 2, 2, 3, 3, 5, 5, 8, 8, 13, 13, 21, 21, 34, 34, 55, 55, 89, 89, 144, 144, 233, 233, 377, 377, 610, 610, 987, 987, 1597, 1597, 2584, 2584, 4181, 4181, 6765, 6765, 10946, 10946, 17711, 17711, 28657, 28657, 46368, 46368, 75025, 75025, 121393
Offset: 0

Views

Author

Roger L. Bagula, Mar 24 2005

Keywords

Comments

The usual policy in the OEIS is not to include such "doubled" sequences. This is an exception. - N. J. A. Sloane
The Gi2 sums, see A180662, of triangle A065941 equal the terms of this sequence without the two leading zeros. - Johannes W. Meijer, Aug 16 2011

Crossrefs

Partial sums: A094707.

Programs

  • Magma
    [Fibonacci(Floor(n/2)): n in [0..60]]; // G. C. Greubel, Oct 22 2024
    
  • Maple
    A103609 := proc(n): combinat[fibonacci](floor(n/2)) ; end proc: seq(A103609(n), n=0..52); # Johannes W. Meijer, Aug 16 2011
  • Mathematica
    a[0] = 0; a[1] = 0; a[2] = 1; a[3] = 1; a[n_Integer?Positive] := a[n] = a[n - 2] + a[n - 4]; aa = Table[a[n], {n, 0, 200}]
    Join[{0, 0}, LinearRecurrence[{0, 1, 0, 1}, {1, 1, 1, 1}, 60]] (* Vincenzo Librandi, Jan 19 2016 *)
    With[{fibs=Fibonacci[Range[0,30]]},Riffle[fibs,fibs]] (* Harvey P. Dale, Jul 11 2025 *)
  • PARI
    a(n)=fibonacci(n\2) \\ Charles R Greathouse IV, Oct 07 2015
    
  • PARI
    my(x='x+O('x^50)); Vec(x^2*(1+x)/(1-x^2-x^4)) \\ G. C. Greubel, May 01 2017
    
  • SageMath
    [fibonacci(n//2) for n in range(61)] # G. C. Greubel, Oct 22 2024

Formula

a(n) = a(n-2) + a(n-4).
G.f.: x^2*(1+x)/(1-x^2-x^4). - R. J. Mathar, Sep 27 2008
a(n) = A000045(floor(n/2)). - Johannes W. Meijer, Aug 16 2011

Extensions

Edited by N. J. A. Sloane, Dec 01 2006
Incorrect formula deleted by Johannes W. Meijer, Aug 16 2011

A142245 Expansion of 2*x*(6 + 5*x) / ((1 - x)*(1 - x - x^2)).

Original entry on oeis.org

0, 12, 34, 68, 124, 214, 360, 596, 978, 1596, 2596, 4214, 6832, 11068, 17922, 29012, 46956, 75990, 122968, 198980, 321970, 520972, 842964, 1363958, 2206944, 3570924, 5777890, 9348836, 15126748, 24475606, 39602376, 64078004, 103680402, 167758428, 271438852, 439197302
Offset: 0

Views

Author

Paul Curtz, Sep 18 2008

Keywords

Comments

The generic a(n) = 2*a(n-1)-a(n-3) for this family of recurrences (see the link to the OEIS index) leads directly to a common symmetry of the form a(n+1)-2a(n) = 12, 10, 0, -12, -34, -68, -124,... = 12, 10, -a(n).

Crossrefs

Programs

  • Mathematica
    a[n_Integer/;n>=0]:=23 Fibonacci[n]+11 LucasL[n]-22 (* Todd Silvestri, Dec 16 2014 *)
    LinearRecurrence[{2,0,-1},{0,12,34},40] (* Harvey P. Dale, May 12 2015 *)
  • PARI
    concat(0, Vec(2*x*(6 + 5*x) / ((1 - x)*(1 - x - x^2)) + O(x^50))) \\ Colin Barker, Nov 13 2017

Formula

G.f.: 2*x*(6 + 5*x) / ((1 - x)*(1 - x - x^2)).
a(n) = 10*A094707(2*n) + A094707(2*n+1).
a(n) = 2*A022095(n+3) - 22. - R. J. Mathar, Jul 07 2011
a(n) = 23*F(n)+11*L(n)-22 = 23*A000045(n)+11*A000032(n)-22, where F(n) and L(n) are the n-th Fibonacci and Lucas numbers, respectively. - Todd Silvestri, Dec 16 2014
a(n) = (1/5)*(-110 + (55-23*sqrt(5))*((1-sqrt(5))/2)^n + ((1+sqrt(5))/2)^n*(55+23*sqrt(5))). - Colin Barker, Nov 13 2017
Showing 1-3 of 3 results.