cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 27 results. Next

A039684 Erroneous version of A001232.

Original entry on oeis.org

1089, 10989, 109989, 1099989, 10999989, 109999989
Offset: 1

Views

Author

Keywords

A214927 Number of n-digit numbers N that do not end with 0 and are such that the reversal of N divides N but is different from N.

Original entry on oeis.org

0, 0, 0, 2, 2, 2, 2, 4, 4, 6, 6, 10, 10, 16, 16, 26, 26, 42, 42, 68, 68, 110, 110, 178, 178, 288, 288, 466, 466, 754, 754, 1220, 1220, 1974, 1974, 3194, 3194, 5168, 5168, 8362, 8362, 13530, 13530, 21892, 21892, 35422, 35422, 57314, 57314, 92736, 92736, 150050, 150050, 242786, 242786, 392836, 392836, 635622, 635622
Offset: 1

Views

Author

Gregory A. Rosenthal, Mar 10 2013

Keywords

Comments

For the actual numbers, see A031877 and their reversals in A008919. See especially the comments in A008919.

Examples

			The smallest examples of such numbers are 8712 and 9801 (so a(n)=0 for n < 4, a(4) = 2); 87912 and 98901 (so a(5) = 2); and 879912 and 989901 (so a(6) = 2).
		

References

  • W. W. R. Ball and H. S. M. Coxeter. Mathematical Recreations and Essays, Macmillan, New York, 1939, page 13; Dover, New York, 13th ed. 1987, pp. 14-15.
  • H. Camous, Jouer Avec Les Maths, "Cardinaux Réversibles", Section I, Problem 6, pp. 27, 37-38; Les Editions D'Organisation, Paris, 1984.
  • Heinrich Dörrie, Mathematische Miniaturen, Ferdinand Hirt, Breslau, Germany, 1943; see pages 337-339.
  • M. Gardner, Mathematical Magic Show, Vintage Books, 1978, pp. 203, 204, 211, 212.
  • C. A. Grimm and D. W. Ballew, Reversible multiples, J. Rec. Math. 8 (1975-1976), 89-91.
  • D. Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, London, 1986, Entry 1089.

Crossrefs

Programs

  • Magma
    [0] cat [2*Fibonacci(Floor((n-2)/2)): n in [2..60]]; // Vincenzo Librandi, Jun 18 2013
    
  • Mathematica
    Join[{0}, Table[2 Fibonacci[Floor[(n-2)/2]], {n, 2, 60}]] (* Vincenzo Librandi, Jun 18 2013 *)
  • SageMath
    def A214927(n): return 2*(fibonacci((n-2)//2) -int(n==1))
    [A214927(n) for n in range(1,71)] # G. C. Greubel, Oct 23 2024

Formula

a(n) = 2*Fibonacci(floor((n-2)/2)) = 2*A103609(n-2), for n > 1.
G.f.: 2*x^4*(1+x) / (1-x^2-x^4). - Colin Barker, Dec 31 2013

Extensions

Formula, more terms and additional references and links from N. J. A. Sloane, Mar 11 2013

A103609 Fibonacci numbers repeated (cf. A000045).

Original entry on oeis.org

0, 0, 1, 1, 1, 1, 2, 2, 3, 3, 5, 5, 8, 8, 13, 13, 21, 21, 34, 34, 55, 55, 89, 89, 144, 144, 233, 233, 377, 377, 610, 610, 987, 987, 1597, 1597, 2584, 2584, 4181, 4181, 6765, 6765, 10946, 10946, 17711, 17711, 28657, 28657, 46368, 46368, 75025, 75025, 121393
Offset: 0

Views

Author

Roger L. Bagula, Mar 24 2005

Keywords

Comments

The usual policy in the OEIS is not to include such "doubled" sequences. This is an exception. - N. J. A. Sloane
The Gi2 sums, see A180662, of triangle A065941 equal the terms of this sequence without the two leading zeros. - Johannes W. Meijer, Aug 16 2011

Crossrefs

Partial sums: A094707.

Programs

  • Magma
    [Fibonacci(Floor(n/2)): n in [0..60]]; // G. C. Greubel, Oct 22 2024
    
  • Maple
    A103609 := proc(n): combinat[fibonacci](floor(n/2)) ; end proc: seq(A103609(n), n=0..52); # Johannes W. Meijer, Aug 16 2011
  • Mathematica
    a[0] = 0; a[1] = 0; a[2] = 1; a[3] = 1; a[n_Integer?Positive] := a[n] = a[n - 2] + a[n - 4]; aa = Table[a[n], {n, 0, 200}]
    Join[{0, 0}, LinearRecurrence[{0, 1, 0, 1}, {1, 1, 1, 1}, 60]] (* Vincenzo Librandi, Jan 19 2016 *)
    With[{fibs=Fibonacci[Range[0,30]]},Riffle[fibs,fibs]] (* Harvey P. Dale, Jul 11 2025 *)
  • PARI
    a(n)=fibonacci(n\2) \\ Charles R Greathouse IV, Oct 07 2015
    
  • PARI
    my(x='x+O('x^50)); Vec(x^2*(1+x)/(1-x^2-x^4)) \\ G. C. Greubel, May 01 2017
    
  • SageMath
    [fibonacci(n//2) for n in range(61)] # G. C. Greubel, Oct 22 2024

Formula

a(n) = a(n-2) + a(n-4).
G.f.: x^2*(1+x)/(1-x^2-x^4). - R. J. Mathar, Sep 27 2008
a(n) = A000045(floor(n/2)). - Johannes W. Meijer, Aug 16 2011

Extensions

Edited by N. J. A. Sloane, Dec 01 2006
Incorrect formula deleted by Johannes W. Meijer, Aug 16 2011

A031877 Nontrivial reversal numbers (numbers which are integer multiples of their reversals), excluding palindromic numbers and multiples of 10.

Original entry on oeis.org

8712, 9801, 87912, 98901, 879912, 989901, 8799912, 9899901, 87128712, 87999912, 98019801, 98999901, 871208712, 879999912, 980109801, 989999901, 8712008712, 8791287912, 8799999912, 9801009801, 9890198901, 9899999901, 87120008712, 87912087912, 87999999912
Offset: 1

Views

Author

Keywords

Comments

The terms of this sequence are sometimes called palintiples.
All terms are of the form 87...12 = 4*21...78 or 98...01 = 9*10...89. [This was proved by Hoey, 1992. - N. J. A. Sloane, Oct 19 2014] More precisely, they are obtained from concatenated copies of either 8712 or 9801, with 9's inserted "in the middle of" these and/or 0's inserted between the copies these, in a symmetrical way. A008919 lists the reversals, but not in the same order, e.g., R(a(2)) < R(a(1)). - M. F. Hasler, Aug 18 2014
There are 2*Fibonacci(floor((n-2)/2)) terms with n digits (this is A214927 or essentially twice A103609). - Ray Chandler, Oct 11 2017

References

  • W. W. R. Ball and H. S. M. Coxeter. Mathematical Recreations and Essays (1939, page 13); 13th ed. New York: Dover, pp. 14-15, 1987.
  • G. H. Hardy, A Mathematician's Apology (Cambridge Univ. Press, 1940, reprinted 2000), pp. 104-105 (describes this problem as having "nothing in [it] which appeals much to a mathematician.").

Crossrefs

See A008919 for reversals (this is the main entry for the problem).
Union of A222814 and A222815.
Subsequence of A118959.

Programs

  • Haskell
    a031877_list = [x | x <- [1..], x `mod` 10 > 0,
                        let x' = a004086 x, x' /= x && x `mod` x' == 0]
    -- Reinhard Zumkeller, Jul 15 2013
    
  • Mathematica
    fQ[n_] := Block[{id = IntegerDigits@n}, Mod[n, FromDigits@ Reverse@id] == 0 && n != FromDigits@ Reverse@ id && Mod[n, 10] > 0]; k = 1; lst = {}; While[k < 10^9, If[fQ@k, AppendTo[lst, k]; Print@k]; k++ ]; lst (* Robert G. Wilson v, Jun 11 2010 *)
    okQ[t_]:=t==Reverse[t]&&First[t]!=0&&Min[Length/@Split[t]]>1; Sort[Flatten[ {(4*198)#,(9*99)#}&/@Flatten[Table[FromDigits/@Select[Tuples[ {0,1},n], okQ],{n,12}]]]] (* Harvey P. Dale, Jul 03 2013 *)
  • PARI
    is_A031877(n)={n%10 && n%A004086(n)==0 && n>A004086(n)} \\ M. F. Hasler, Aug 18 2014
    
  • Python
    A031877 = []
    for n in range(1,10**7):
        if n % 10:
            s1 = str(n)
            s2 = s1[::-1]
            if s1 != s2 and not n % int(s2):
                A031877.append(n) # Chai Wah Wu, Sep 05 2014

Formula

a(n) = A004086(a(n))*[9/(a(n)%10)], where [...]=9 if a(n) ends in "1" and [...]=4 if a(n) ends in "2". - M. F. Hasler, Aug 18 2014

Extensions

More terms from Jud McCranie, Aug 15 2001
More terms from Sam Mathers, Aug 18 2014

A008918 Numbers k such that 4*k = (k written backwards), k > 0.

Original entry on oeis.org

2178, 21978, 219978, 2199978, 21782178, 21999978, 217802178, 219999978, 2178002178, 2197821978, 2199999978, 21780002178, 21978021978, 21999999978, 217800002178, 217821782178, 219780021978, 219978219978, 219999999978, 2178000002178, 2178219782178
Offset: 1

Views

Author

Keywords

Comments

There are Fibonacci(floor((k-2)/2)) terms with k digits (this is essentially A103609). - Ray Chandler, Oct 12 2017

References

  • Alfred S. Posamentier, Math Charmers, Tantalizing Tidbits for the Mind, Prometheus Books, NY, 2003, pages 41-42.
  • D. Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986.

Crossrefs

Programs

  • Mathematica
    Rest@Select[FromDigits /@ Tuples[{0, 198}, 11], IntegerDigits[4*#] == Reverse@IntegerDigits[#] &] (* Arkadiusz Wesolowski, Aug 14 2012 *)
    okQ[t_]:=t==Reverse[t]&&First[t]!=0&&Min[Length/@Split[t]]>1; 198#&/@ Flatten[ Table[FromDigits/@Select[Tuples[{0,1},n],okQ],{n,20}]] (* Harvey P. Dale, Jul 03 2013 *)
  • PARI
    rev(n) = (eval(concat(Vecrev(Str(n)))));
    isok(n) = rev(n) == 4*n; \\ Michel Marcus, Sep 13 2015

Formula

Theorem (David W. Wilson): a(n) = 2*A001232(n).

Extensions

Corrected and extended by David W. Wilson Aug 15 1996, Dec 15 1997
a(20)-a(21) from Arkadiusz Wesolowski, Aug 14 2012

A008919 Numbers k such that k written backwards is a nontrivial multiple of k.

Original entry on oeis.org

1089, 2178, 10989, 21978, 109989, 219978, 1099989, 2199978, 10891089, 10999989, 21782178, 21999978, 108901089, 109999989, 217802178, 219999978, 1089001089, 1098910989, 1099999989, 2178002178, 2197821978, 2199999978, 10890001089
Offset: 1

Views

Author

Keywords

Comments

There are 2*Fibonacci(floor((n-2)/2)) terms with n digits (this is A214927 or essentially twice A103609). - N. J. A. Sloane, Mar 20 2013
All terms are made of "symmetric" concatenations of 1089 and/or 2178, with an arbitrary numbers of 9's inserted in the middle of these and 0's inserted between them. See A031877 for the reversals and further information: union of the two, sequences "made of" 1089 or 2178 only. - M. F. Hasler, Jun 23 2019
Also: 99 times A061852: numbers that are palindromic, have only digits in {0, 1} or in {0, 2}, and no isolated ("single") digit. - M. F. Hasler, Oct 17 2022

References

  • W. W. R. Ball and H. S. M. Coxeter. Mathematical Recreations and Essays (1939, page 13); 13th ed. New York: Dover, pp. 14-15, 1987.
  • Gardiner, Anthony, and A. D. Gardiner. Discovering mathematics: The art of investigation. Oxford University Press, 1987.
  • G. H. Hardy, A Mathematician's Apology (Cambridge Univ. Press, 1940, reprinted 2000), pp. 104-105 (describes this problem as having "nothing in [it] which appeals much to a mathematician").
  • D. Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986.

Crossrefs

Cf. A001232 (9k = R(k)), A004086 (R(n): reverse), A008918 (4k = R(k)), A214927, A103609 (Fibonacci([n/2])). Reversals are in A031877.

Programs

  • Haskell
    a008919 n = a008919_list !! (n-1)
    a008919_list = [x | x <- [1..],
                        let (x',m) = divMod (a004086 x) x, m == 0, x' > 1]
    -- Reinhard Zumkeller, Feb 03 2012
    
  • Mathematica
    Reap[ Do[ If[ Reverse[ IntegerDigits[n]] == IntegerDigits[4*n], Print[n]; Sow[n]]; If[ Reverse[ IntegerDigits[n + 11]] == IntegerDigits[9*(n + 11)], Print[n + 11]; Sow[n + 11]], {n, 78, 2*10^10, 100}]][[2, 1]] (* Jean-François Alcover, Jun 19 2012, after David W. Wilson, assuming n congruent to 78 or 89 mod 100 *)
    okQ[t_]:=t==Reverse[t]&&First[t]!=0&&Min[Length/@Split[t]]>1; Sort[ Flatten[ {99#, 198#}&/@Flatten[Table[FromDigits/@Select[Tuples[ {0,1},n], okQ],{n,10}]]]] (* Harvey P. Dale, Jul 03 2013 *)
  • PARI
    is_A008919(n,r=A004086(n))={n>r && n%r==0} \\ M. F. Hasler, Jun 23 2019

Formula

If reverse(n) = k*n in base 10, then k = 1, 4 or 9 [Klosinski and Smolarski]. Hence A008919 is the union of A001232 and A008918. - David W. Wilson
a(n) = 99*A061852(n). - M. F. Hasler, Oct 17 2022

Extensions

Corrected and extended by David W. Wilson Aug 15 1996, Dec 15 1997

A222814 Numbers (not ending in 0) which are 9 times their digit-reversal.

Original entry on oeis.org

9801, 98901, 989901, 9899901, 98019801, 98999901, 980109801, 989999901, 9801009801, 9890198901, 9899999901, 98010009801, 98901098901, 98999999901, 980100009801, 980198019801, 989010098901, 989901989901, 989999999901, 9801000009801, 9801989019801, 9890100098901
Offset: 1

Views

Author

N. J. A. Sloane, Mar 11 2013

Keywords

Comments

There are Fibonacci(floor((n-2)/2)) terms with n digits (this is essentially A103609). - Ray Chandler, Oct 12 2017

Crossrefs

Equals 9*A001232.

Programs

  • Mathematica
    okQ[t_]:=t==Reverse[t]&&First[t]!=0&&Min[Length/@Split[t]]>1; Sort[ Flatten[ (9*99)#&/@Flatten[Table[FromDigits/@Select[Tuples[{0,1},n],okQ],{n,12}]]]] (* Harvey P. Dale, Jul 03 2013 *)

A226916 Number of (17,11)-reverse multiples with n digits.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 2, 1, 2, 2, 3, 3, 5, 4, 7, 6, 10, 9, 15, 13, 22, 19, 32, 28, 47, 41, 69, 60, 101, 88, 148, 129, 217, 189, 318, 277, 466, 406, 683, 595, 1001, 872, 1467, 1278, 2150, 1873, 3151, 2745, 4618, 4023, 6768, 5896, 9919, 8641, 14537, 12664, 21305, 18560, 31224, 27201, 45761
Offset: 0

Views

Author

N. J. A. Sloane, Jun 24 2013

Keywords

Comments

Comment from Emeric Deutsch, Aug 21 2016 (Start):
Given an increasing sequence of positive integers S = {a0, a1, a2, ... }, let
F(x) = x^{a0} + x^{a1} + x^{a2} + ... .
Then the g. f. for the number of palindromic compositions of n with parts in S is (see Hoggatt and Bicknell, Fibonacci Quarterly, 13(4), 1975):
(1 + F(x))/(1 - F(x^2))
Playing with this, I have found easily that
1. number of palindromic compositions of n into {3,4,5,...} = A226916(n+4);
2. number of palindromic compositions of n into {1,4,7,10,13,...} = A226916(n+6);
3. number of palindromic compositions of n into {1,4} = A226517(n+10);
4. number of palindromic compositions of n into {1,5} = A226516(n+11).
(End)

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[x^4 (1 - x^2 + x^3 + x^4) / (1 - x^2 - x^6), {x, 0, 70}], x] (* Vincenzo Librandi, Jul 16 2013 *)

Formula

G.f.: x^4*(1+x)*(1-x+x^3)/(1-x^2-x^6).
a(2n) = A058278(n-1). a(2n+1)=A000930(n-3). - R. J. Mathar, Dec 13 2022

A101705 Numbers n such that n = 12*reversal(n).

Original entry on oeis.org

0, 540, 5940, 54540, 59940, 540540, 599940, 5400540, 5454540, 5945940, 5999940, 54000540, 54594540, 59405940, 59999940, 540000540, 540540540, 545454540, 545994540, 594005940, 594545940, 599459940, 599999940, 5400000540, 5405940540, 5454054540, 5459994540, 5940005940, 5945945940, 5994059940, 5999999940
Offset: 1

Views

Author

Farideh Firoozbakht, Jan 02 2005

Keywords

Comments

60 divides all terms of the sequence. For all nonnegative integers m and n all numbers of the form f(m,n) = (100*(6*10^m - 1)+ 40)*(10^((m + 2)*n) - 1)/(10^(m + 2) - 1) are in the sequence, in fact f(m,n) = (5.(9)(m))(n).0 where dot between numbers means concatenation and "(r)(t)" means number of r's is t. f(m,1) = 100*(6*10^m - 1)+ 40 = 5.(9)(m).40; f(0,1) = 540, f(1,1) = 5940, f(2,1)=59940, etc. f(m,2) = 5.(9)(m).50(9)(m).40; f(0,2) = 54540, f(1,2) = 5945940, etc. Let g(s,t,r) = s*(10^((L+t)(1+r))-1)/(10^(L+t)-1) where L = number of digits of s. If s is in the sequence then all numbers of the form g(s,t,r) for nonnegative integers t and r are in the sequence (the function g is the same function that has been defined in the sequence A101704). If n and m are nonnegative integers then g(n,0,m) = (n)(m+1) for example g(13,0,3) = (13)(4) = 13131313.

Examples

			g(540,0,5)= (540)(6) = 540540540540540540 is in the sequence because reversal(540540540540540540) = 45045045045045045 and 12*45045045045045045 = 540540540540540540.
		

Crossrefs

Programs

  • Mathematica
    Do[If[n == 12*FromDigits[Reverse[IntegerDigits[n]]], Print[n]], {n, 0, 6000000000, 60}]
    Select[Range[0,6*10^9,60],#==12IntegerReverse[#]&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Apr 12 2017 *)
  • Python
    def A101705(n):
        if n == 1: return 0
        a = 1<Chai Wah Wu, Jul 23 2024

Formula

a(n) = 540*A057148. - Ray Chandler, Oct 09 2017

Extensions

a(25)-a(31) from Max Alekseyev, Aug 18 2013

A222815 Numbers (not ending in 0) which are 4 times their digit-reversal.

Original entry on oeis.org

8712, 87912, 879912, 8799912, 87128712, 87999912, 871208712, 879999912, 8712008712, 8791287912, 8799999912, 87120008712, 87912087912, 87999999912, 871200008712, 871287128712, 879120087912, 879912879912, 879999999912, 8712000008712, 8712879128712, 8791200087912
Offset: 1

Views

Author

N. J. A. Sloane, Mar 11 2013

Keywords

Comments

There are Fibonacci(floor((n-2)/2)) terms with n digits (this is essentially A103609). - Ray Chandler, Oct 12 2017

Crossrefs

Equals 4*A008918.

Programs

  • Mathematica
    okQ[t_]:=t==Reverse[t]&&First[t]!=0&&Min[Length/@Split[t]]>1; Sort[Flatten[ (4*198)#&/@Flatten[Table[FromDigits/@Select[Tuples[{0,1},n],okQ],{n,12}]]]] (* Harvey P. Dale, Jul 03 2013 *)
Showing 1-10 of 27 results. Next