A039684 Erroneous version of A001232.
1089, 10989, 109989, 1099989, 10999989, 109999989
Offset: 1
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
The smallest examples of such numbers are 8712 and 9801 (so a(n)=0 for n < 4, a(4) = 2); 87912 and 98901 (so a(5) = 2); and 879912 and 989901 (so a(6) = 2).
[0] cat [2*Fibonacci(Floor((n-2)/2)): n in [2..60]]; // Vincenzo Librandi, Jun 18 2013
Join[{0}, Table[2 Fibonacci[Floor[(n-2)/2]], {n, 2, 60}]] (* Vincenzo Librandi, Jun 18 2013 *)
def A214927(n): return 2*(fibonacci((n-2)//2) -int(n==1)) [A214927(n) for n in range(1,71)] # G. C. Greubel, Oct 23 2024
[Fibonacci(Floor(n/2)): n in [0..60]]; // G. C. Greubel, Oct 22 2024
A103609 := proc(n): combinat[fibonacci](floor(n/2)) ; end proc: seq(A103609(n), n=0..52); # Johannes W. Meijer, Aug 16 2011
a[0] = 0; a[1] = 0; a[2] = 1; a[3] = 1; a[n_Integer?Positive] := a[n] = a[n - 2] + a[n - 4]; aa = Table[a[n], {n, 0, 200}] Join[{0, 0}, LinearRecurrence[{0, 1, 0, 1}, {1, 1, 1, 1}, 60]] (* Vincenzo Librandi, Jan 19 2016 *) With[{fibs=Fibonacci[Range[0,30]]},Riffle[fibs,fibs]] (* Harvey P. Dale, Jul 11 2025 *)
a(n)=fibonacci(n\2) \\ Charles R Greathouse IV, Oct 07 2015
my(x='x+O('x^50)); Vec(x^2*(1+x)/(1-x^2-x^4)) \\ G. C. Greubel, May 01 2017
[fibonacci(n//2) for n in range(61)] # G. C. Greubel, Oct 22 2024
a031877_list = [x | x <- [1..], x `mod` 10 > 0, let x' = a004086 x, x' /= x && x `mod` x' == 0] -- Reinhard Zumkeller, Jul 15 2013
fQ[n_] := Block[{id = IntegerDigits@n}, Mod[n, FromDigits@ Reverse@id] == 0 && n != FromDigits@ Reverse@ id && Mod[n, 10] > 0]; k = 1; lst = {}; While[k < 10^9, If[fQ@k, AppendTo[lst, k]; Print@k]; k++ ]; lst (* Robert G. Wilson v, Jun 11 2010 *) okQ[t_]:=t==Reverse[t]&&First[t]!=0&&Min[Length/@Split[t]]>1; Sort[Flatten[ {(4*198)#,(9*99)#}&/@Flatten[Table[FromDigits/@Select[Tuples[ {0,1},n], okQ],{n,12}]]]] (* Harvey P. Dale, Jul 03 2013 *)
is_A031877(n)={n%10 && n%A004086(n)==0 && n>A004086(n)} \\ M. F. Hasler, Aug 18 2014
A031877 = [] for n in range(1,10**7): if n % 10: s1 = str(n) s2 = s1[::-1] if s1 != s2 and not n % int(s2): A031877.append(n) # Chai Wah Wu, Sep 05 2014
Rest@Select[FromDigits /@ Tuples[{0, 198}, 11], IntegerDigits[4*#] == Reverse@IntegerDigits[#] &] (* Arkadiusz Wesolowski, Aug 14 2012 *) okQ[t_]:=t==Reverse[t]&&First[t]!=0&&Min[Length/@Split[t]]>1; 198#&/@ Flatten[ Table[FromDigits/@Select[Tuples[{0,1},n],okQ],{n,20}]] (* Harvey P. Dale, Jul 03 2013 *)
rev(n) = (eval(concat(Vecrev(Str(n))))); isok(n) = rev(n) == 4*n; \\ Michel Marcus, Sep 13 2015
a008919 n = a008919_list !! (n-1) a008919_list = [x | x <- [1..], let (x',m) = divMod (a004086 x) x, m == 0, x' > 1] -- Reinhard Zumkeller, Feb 03 2012
Reap[ Do[ If[ Reverse[ IntegerDigits[n]] == IntegerDigits[4*n], Print[n]; Sow[n]]; If[ Reverse[ IntegerDigits[n + 11]] == IntegerDigits[9*(n + 11)], Print[n + 11]; Sow[n + 11]], {n, 78, 2*10^10, 100}]][[2, 1]] (* Jean-François Alcover, Jun 19 2012, after David W. Wilson, assuming n congruent to 78 or 89 mod 100 *) okQ[t_]:=t==Reverse[t]&&First[t]!=0&&Min[Length/@Split[t]]>1; Sort[ Flatten[ {99#, 198#}&/@Flatten[Table[FromDigits/@Select[Tuples[ {0,1},n], okQ],{n,10}]]]] (* Harvey P. Dale, Jul 03 2013 *)
is_A008919(n,r=A004086(n))={n>r && n%r==0} \\ M. F. Hasler, Jun 23 2019
okQ[t_]:=t==Reverse[t]&&First[t]!=0&&Min[Length/@Split[t]]>1; Sort[ Flatten[ (9*99)#&/@Flatten[Table[FromDigits/@Select[Tuples[{0,1},n],okQ],{n,12}]]]] (* Harvey P. Dale, Jul 03 2013 *)
CoefficientList[Series[x^4 (1 - x^2 + x^3 + x^4) / (1 - x^2 - x^6), {x, 0, 70}], x] (* Vincenzo Librandi, Jul 16 2013 *)
g(540,0,5)= (540)(6) = 540540540540540540 is in the sequence because reversal(540540540540540540) = 45045045045045045 and 12*45045045045045045 = 540540540540540540.
Do[If[n == 12*FromDigits[Reverse[IntegerDigits[n]]], Print[n]], {n, 0, 6000000000, 60}] Select[Range[0,6*10^9,60],#==12IntegerReverse[#]&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Apr 12 2017 *)
def A101705(n): if n == 1: return 0 a = 1<Chai Wah Wu, Jul 23 2024
okQ[t_]:=t==Reverse[t]&&First[t]!=0&&Min[Length/@Split[t]]>1; Sort[Flatten[ (4*198)#&/@Flatten[Table[FromDigits/@Select[Tuples[{0,1},n],okQ],{n,12}]]]] (* Harvey P. Dale, Jul 03 2013 *)
Comments