A001232 Numbers k such that 9*k = (k written backwards), k > 0.
1089, 10989, 109989, 1099989, 10891089, 10999989, 108901089, 109999989, 1089001089, 1098910989, 1099999989, 10890001089, 10989010989, 10999999989, 108900001089, 108910891089, 109890010989, 109989109989, 109999999989, 1089000001089, 1089109891089
Offset: 1
Examples
1089*9 = 9801.
References
- H. Camous, Jouer Avec Les Maths, "Cardinaux Réversibles", Section I, Problem 6, pp. 27, 37-38; Les Editions d'Organisation, Paris, 1984.
- Alfred S. Posamentier, Math Charmers, Tantalizing Tidbits for the Mind, Prometheus Books, NY, 2003, page 41.
- David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, under #1089.
Links
- Ray Chandler, Table of n, a(n) for n = 1..10000
- C. A. Van Cott, The Integer Hokey Pokey, Math Horizons, Vol. 28, pp. 24-27, November 2020.
- L. H. Kendrick, Young Graphs: 1089 et al., J. Int. Seq. 18 (2015) 15.9.7.
- N. J. A. Sloane, 2178 And All That, arXiv:1307.0453 [math.NT], 2013; Fib. Quart., 52 (2014), 99-120.
- N. J. A. Sloane, 2178 And All That [Local copy]
- Simon Weisgerber, Value Judgments in Mathematics: GH Hardy and the (Non-)seriousness of Mathematical Theorems, Global Phil. (2024) Vol. 34, Art. No. 1. See p. 8.
Crossrefs
Programs
-
Mathematica
Rest@Select[FromDigits /@ Tuples[{0, 99}, 11], IntegerDigits[9*#] == Reverse@IntegerDigits[#] &] (* Arkadiusz Wesolowski, Aug 14 2012 *) okQ[t_]:=t==Reverse[t]&&First[t]!=0&&Min[Length/@Split[t]]>1; 99#&/@Flatten[Table[ FromDigits/@ Select[Tuples[{0,1},n],okQ],{n,20}]] (* Harvey P. Dale, Jul 03 2013 *)
-
PARI
isok(n) = 9*n == eval(concat(Vecrev(Str(n)))); \\ Michel Marcus, Feb 21 2015
-
PARI
{A001232_row(n, L(v, s=0)=for(i=1, #v, s*=10^v[i]; i%2 && s+=10^v[i]\900); s)=if(n<4, [], L, Set(apply(L, self()(n, 0)))*99, L=List([[n]]); for(k=4, n\2, listput(L,[k,n-2*k,k]); for(p=0, n\2-k, foreach(self()(n-(k+p)*2, 0), M, listput(L, concat([[k, p], M, [p, k]]))))); L)} \\ List of n-digit terms. - M. F. Hasler, Oct 04 2022 concat(apply(A001232_row, [1..14]))
-
Python
def A001232_row(n, r=11): # list of n-digit terms L = [] if n<4 else [[n]] for L1 in range(4, n//2+1): L.append([L1, n-2*L1, L1]) L.extend([L1,L2]+M+[L2,L1] for L2 in range(n//2-1-L1) for M in A001232_row(n-(L1+L2)*2, 0)) if not r: return L def f(L, s=0): for k,L in enumerate(L): s *= 10**L if not k%2: s += 10**(L-2)-1 return r*s return sorted(map(f, A001232_row(n, 0))) # M. F. Hasler, Oct 04 2022
Formula
Theorem: Terms in this sequence have the form 99*m, where the decimal representation of m contains only 1's and 0's, is palindromic and contains no singleton 1's or 0's. Hence contains Fib(floor(k/2)-1) k-digit terms, k >= 4. - David W. Wilson, Dec 15 1997
a(A094707(n)) = 11*(10^n - 1) = 11*A002283(n) = 99*A002275(n), for n>1. - Lekraj Beedassy, Jun 11 2004. (Restored from history and corrected. - Ray Chandler, Oct 11 2017)
Extensions
Corrected and extended by David W. Wilson, Aug 15 1996, Dec 15 1997
a(20)-a(21) from Arkadiusz Wesolowski, Aug 14 2012
a(1..10^4) in b-file double-checked with independent code by M. F. Hasler, Oct 04 2022
Comments