A226516
Number of (18,7)-reverse multiples with n digits.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 2, 3, 3, 4, 4, 6, 5, 8, 6, 10, 8, 13, 11, 17, 15, 23, 20, 31, 26, 41, 34, 54, 45, 71, 60, 94, 80, 125, 106, 166, 140, 220, 185, 291, 245, 385, 325, 510, 431, 676, 571, 896, 756, 1187, 1001, 1572, 1326, 2082, 1757, 2758, 2328, 3654, 3084, 4841, 4085, 6413
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- V. E. Hogatt, M. Bicknell, Palindromic Compositions, Fib. Quart. 13(4) (1975) 350-356
- N. J. A. Sloane, 2178 And All That, Fib. Quart., 52 (2014), 99-120.
- N. J. A. Sloane, 2178 And All That [Local copy]
- Index entries for linear recurrences with constant coefficients, signature (0,1,0,0,0,0,0,0,0,1).
-
f:=proc(n) option remember;
if
n <= 5 then 0
elif n=6 then 1
elif n <= 10 then 0
elif n <= 12 then 1
else f(n-2)+f(n-10)
fi;
end;
[seq(f(n),n=0..100)]
-
CoefficientList[Series[x^6 (1 - x^2 + x^5 + x^6) / (1 - x^2 - x^10), {x, 0, 80}], x] (* Vincenzo Librandi, Jun 18 2013 *)
LinearRecurrence[{0,1,0,0,0,0,0,0,0,1},{0,0,0,0,0,0,1,0,0,0,0,1,1},80] (* Harvey P. Dale, Jun 17 2015 *)
A226517
Number of (19,14)-reverse multiples with n digits.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 2, 1, 2, 1, 3, 2, 4, 3, 6, 4, 8, 5, 11, 7, 15, 10, 21, 14, 29, 19, 40, 26, 55, 36, 76, 50, 105, 69, 145, 95, 200, 131, 276, 181, 381, 250, 526, 345, 726, 476, 1002, 657, 1383, 907, 1909, 1252, 2635, 1728, 3637, 2385, 5020, 3292, 6929, 4544, 9564, 6272, 13201, 8657, 18221
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- V. E. Hogatt, M. Bicknell, Palindromic Compositions, Fib. Quart. 13(4) (1975) 350-356
- N. J. A. Sloane, 2178 And All That, Fib. Quart., 52 (2014), 99-120.
- N. J. A. Sloane, 2178 And All That [Local copy]
- Index entries for linear recurrences with constant coefficients, signature (0,1,0,0,0,0,0,1).
-
f:=proc(n) option remember;
if
n <= 5 then 0
elif n=6 then 1
elif n <= 9 then 0
elif n <= 11 then 1
else f(n-2)+f(n-8)
fi;
end;
[seq(f(n),n=0..120)];
-
CoefficientList[Series[x^6 (1 - x^2 + x^4 + x^5) / (1 - x^2 - x^8), {x, 0, 80}], x] (* Vincenzo Librandi, Jun 18 2013 *)
LinearRecurrence[{0,1,0,0,0,0,0,1},{0,0,0,0,0,0,1,0,0,0,1,1},80] (* Harvey P. Dale, Aug 23 2019 *)
A276056
Triangle read by rows: T(n,k) is the number of compositions of n with parts in {1,3} and having asymmetry degree equal to k, (n>=0; 0<=k<=floor(n/4)).
Original entry on oeis.org
1, 1, 1, 2, 1, 2, 2, 2, 2, 4, 3, 6, 3, 6, 4, 5, 10, 4, 4, 12, 12, 7, 18, 16, 6, 22, 24, 8, 10, 34, 36, 8, 9, 36, 52, 32, 15, 58, 76, 40, 13, 60, 108, 80, 16, 22, 96, 160, 112, 16, 19, 100, 204, 192, 80, 32, 160, 312, 272, 96, 28, 162, 376, 440, 240, 32
Offset: 0
Row 6 is [2,4] because the compositions of 6 with parts in {1,3} are 33, 3111, 1311, 1131, 1113, and 111111, having asymmetry degrees 0, 1, 1, 1, 1, and 0, respectively.
Triangle starts:
1;
1;
1;
2;
1, 2;
2, 2;
2, 4;
...
- S. Heubach and T. Mansour, Combinatorics of Compositions and Words, CRC Press, 2010.
- Krithnaswami Alladi and V. E. Hoggatt, Jr. Compositions with Ones and Twos, Fibonacci Quarterly, 13 (1975), 233-239.
- V. E. Hoggatt, Jr. and Marjorie Bicknell, Palindromic compositions, Fibonacci Quart., Vol. 13(4), 1975, pp. 350-356.
-
G := (1+z+z^3)/(1-z^2-2*t*z^4-z^6): Gser := simplify(series(G, z = 0, 30)): for n from 0 to 25 do P[n] := sort(coeff(Gser, z, n)) end do: for n from 0 to 25 do seq(coeff(P[n], t, j), j = 0 .. degree(P[n])) end do; # yields sequence in triangular form
-
Table[TakeWhile[BinCounts[#, {0, 1 + Floor[n/4], 1}], # != 0 &] &@ Map[Total, Map[Map[Boole[# >= 1] &, BitXor[Take[# - 1, Ceiling[Length[#]/2]], Reverse@ Take[# - 1, -Ceiling[Length[#]/2]]]] &, Flatten[Map[Permutations, DeleteCases[IntegerPartitions@ n, {_, a_, _} /; Nor[a == 1, a == 3]]], 1]]], {n, 0, 20}] // Flatten (* Michael De Vlieger, Aug 28 2016 *)
A276058
Triangle read by rows: T(n,k) is the number of compositions of n with parts in {3,4,5,6,...} and having asymmetry degree equal to k (n>=0; 0<=k<=floor(n/7)).
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 2, 2, 2, 2, 4, 3, 6, 3, 10, 5, 14, 4, 24, 7, 30, 4, 6, 46, 8, 10, 58, 20, 9, 84, 36, 15, 106, 68, 13, 152, 112, 22, 188, 196, 19, 264, 304, 8, 32, 324, 492, 24, 28, 446, 732, 72, 47, 546, 1120, 160, 41, 744, 1616, 344
Offset: 0
Row 7 is [1,2] because the compositions of 7 with parts in {3,4,5,...} are 7, 34, and 43, having asymmetry degrees 0, 1, and 1, respectively.
Triangle starts:
1;
0;
0;
1;
1;
1;
2;
1,2;
- S. Heubach and T. Mansour, Combinatorics of Compositions and Words, CRC Press, 2010.
- Krithnaswami Alladi and V. E. Hoggatt, Jr. Compositions with Ones and Twos, Fibonacci Quarterly, 13 (1975), 233-239.
- V. E. Hoggatt, Jr. and Marjorie Bicknell, Palindromic compositions, Fibonacci Quart., Vol. 13(4), 1975, pp. 350-356.
-
G := (1-z^2)*(1-z+z^3)/(1-z-z^2+z^3-z^6+z^7-2*t*z^7): Gser := simplify(series(G, z = 0, 30)): for n from 0 to 25 do P[n] := sort(coeff(Gser, z, n)) end do: for n from 0 to 25 do seq(coeff(P[n], t, j), j = 0 .. degree(P[n])) end do; # yields sequence in triangular form
A276060
Triangle read by rows: T(n,k) is the number of compositions of n into parts congruent to 1 mod 3 and having asymmetry degree equal to k (n>=0; 0<=k<=floor(n/5)).
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 2, 2, 2, 2, 4, 3, 6, 3, 10, 5, 10, 4, 4, 20, 4, 7, 22, 12, 6, 34, 20, 10, 42, 36, 9, 64, 48, 8, 15, 70, 96, 8, 13, 112, 120, 32, 22, 124, 204, 56, 19, 184, 280, 112, 32, 212, 436, 176, 16, 28, 310, 564, 360, 16, 47, 346, 896, 504, 80, 41, 512, 1128, 920, 144, 69, 570, 1704, 1360
Offset: 0
Row 7 is [2,4] because the compositions of 7 with parts in {1,4,7,10,...} are 7, 4111, 1411, 1141, 1114, and 1111111, having asymmetry degrees 0, 1, 1, 1, 1, and 0, respectively.
Triangle starts:
1;
1;
1;
1;
2;
1,2;
2,2.
- S. Heubach and T. Mansour, Combinatorics of Compositions and Words, CRC Press, 2010.
- Krithnaswami Alladi and V. E. Hoggatt, Jr. Compositions with Ones and Twos, Fibonacci Quarterly, 13 (1975), 233-239.
- V. E. Hoggatt, Jr. and Marjorie Bicknell, Palindromic compositions, Fibonacci Quart., Vol. 13(4), 1975, pp. 350-356.
-
G := (1-z^2)*(1+z+z^2)*(1-z+z^2)*(1+z-z^3)/(1-z^2-z^3+z^5-2*t*z^5-z^6+z^9): Gser := simplify(series(G, z = 0, 30)): for n from 0 to 25 do P[n] := sort(coeff(Gser, z, n)) end do: for n from 0 to 25 do seq(coeff(P[n], t, j), j = 0 .. degree(P[n])) end do; # yields sequence in triangular form
-
Table[TakeWhile[BinCounts[#, {0, 1 + Floor[n/5], 1}], # != 0 &] &@ Map[Total, Map[Map[Boole[# >= 1] &, BitXor[Take[# - 1, Ceiling[Length[#]/2]], Reverse@ Take[# - 1, -Ceiling[Length[#]/2]]]] &, Flatten[Map[Permutations, DeleteCases[IntegerPartitions@ n, {_, a_, _} /; Mod[a, 3] != 1]], 1]]], {n, 0, 24}] // Flatten (* Michael De Vlieger, Aug 22 2016 *)
A317489
Irregular triangle read by rows. For n >= 3 and 1 <= k <= floor(n/3), T(n,k) is the number of palindromic compositions of n into k parts of size at least 3.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 2, 1, 1, 2, 1, 1, 0, 3, 0, 1, 1, 3, 2, 1, 0, 4, 0, 1, 1, 1, 4, 3, 1, 1, 0, 5, 0, 3, 1, 1, 5, 4, 3, 1, 1, 0, 6, 0, 6, 0, 1, 1, 6, 5, 6, 3, 1, 0, 7, 0, 10, 0, 1, 1, 1, 7, 6, 10, 6, 1, 1, 0, 8, 0, 15, 0, 4, 1, 1, 8, 7, 15, 10, 4, 1, 1, 0, 9, 0, 21, 0, 10, 0, 1, 1, 9, 8, 21, 15, 10, 4, 1, 0, 10, 0, 28, 0, 20, 0, 1, 1, 1, 10, 9, 28, 21, 20, 10, 1, 1, 0, 11, 0, 36, 0, 35, 0, 5
Offset: 3
For n=24 and k=3, T(24,3) = 8 = binomial((24-2)/2-3, (3-1)/2) = binomial(8,1).
The first entries of the irregular triangle formed by the values of T(n,k) are:
1;
1;
1;
1, 1;
1, 0;
1, 1;
1, 0, 1;
1, 1, 1;
1, 0, 2;
1, 1, 2, 1;
1, 0, 3, 0;
1, 1, 3, 2;
1, 0, 4, 0, 1;
1, 1, 4, 3, 1;
1, 0, 5, 0, 3;
1, 1, 5, 4, 3, 1;
1, 0, 6, 0, 6, 0;
1, 1, 6, 5, 6, 3;
1, 0, 7, 0, 10, 0, 1;
1, 1, 7, 6, 10, 6, 1;
1, 0, 8, 0, 15, 0, 4;
1, 1, 8, 7, 15, 10, 4, 1;
1, 0, 9, 0, 21, 0, 10, 0;
1, 1, 9, 8, 21, 15, 10, 4;
1, 0, 10, 0, 28, 0, 20, 0, 1;
1, 1, 10, 9, 28, 21, 20, 10, 1;
1, 0, 11, 0, 36, 0, 35, 0, 5;
Row sums of the triangle equal
A226916(n+4).
-
T[n_, k_] := If[Mod[n, 2] == 1 && Mod[k, 2] == 0, 0, Binomial[Quotient[n-1, 2] - k, Quotient[k-1, 2]]];
Table[T[n, k], {n, 3, 30}, {k, 1, Quotient[n, 3]}] // Flatten (* Jean-François Alcover, Sep 13 2018, from PARI *)
-
T(n,k)=if(n%2==1&&k%2==0, 0, binomial((n-1)\2-k, (k-1)\2)); \\ Andrew Howroyd, Sep 07 2018
Showing 1-6 of 6 results.
Comments