cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 23 results. Next

A121364 Convolution of A066983 with the double Fibonacci sequence A103609.

Original entry on oeis.org

0, 0, 1, 2, 3, 6, 10, 18, 29, 50, 81, 136, 220, 364, 589, 966, 1563, 2550, 4126, 6710, 10857, 17622, 28513, 46224, 74792, 121160, 196041, 317434, 513619, 831430, 1345282, 2177322, 3522981, 5701290, 9224881, 14927768, 24153636, 39083988, 63239221, 102327390
Offset: 1

Views

Author

Graeme McRae, Jul 23 2006

Keywords

Comments

The convolution of 1,0,1,1,1,3,3,7,9,17,25,... (A066983 with 1,0 added to the front) with "A double Fibonacci sequence" (A103609) is the Fibonacci sequence (A000045), with an extra initial 0.

Examples

			a(7)=10 because F(7)=13 and D(8)=3 and a(7)=F(7)-D(8).
		

Crossrefs

Programs

  • Magma
    A121364:= func< n | Fibonacci(n) - Fibonacci(Floor((n+1)/2)) >;
    [A121364(n): n in [1..70]]; // G. C. Greubel, Oct 23 2024
    
  • Mathematica
    LinearRecurrence[{1,2,-1,0,-1,-1},{0, 0, 1, 2, 3, 6},40] (* James C. McMahon, Oct 17 2024 *)
  • PARI
    concat([0,0], Vec(-x^3*(x^2-x-1)/((x^2+x-1)*(x^4+x^2-1)) + O(x^100))) \\ Colin Barker, Oct 13 2014
    
  • SageMath
    def A121364(n): return fibonacci(n) - fibonacci((n+1)//2)
    [A121364(n) for n in range(1,71)] # G. C. Greubel, Oct 23 2024

Formula

a(n) = F(n) - D(n+1), where F is the Fibonacci sequence (A000045) and D is "A double Fibonacci sequence" (A103609).
G.f.: x^3*(1+x-x^2) / ((1-x-x^2)*(1-x^2-x^4)). - Colin Barker, Oct 13 2014

Extensions

More terms from Colin Barker, Oct 13 2014

A214927 Number of n-digit numbers N that do not end with 0 and are such that the reversal of N divides N but is different from N.

Original entry on oeis.org

0, 0, 0, 2, 2, 2, 2, 4, 4, 6, 6, 10, 10, 16, 16, 26, 26, 42, 42, 68, 68, 110, 110, 178, 178, 288, 288, 466, 466, 754, 754, 1220, 1220, 1974, 1974, 3194, 3194, 5168, 5168, 8362, 8362, 13530, 13530, 21892, 21892, 35422, 35422, 57314, 57314, 92736, 92736, 150050, 150050, 242786, 242786, 392836, 392836, 635622, 635622
Offset: 1

Views

Author

Gregory A. Rosenthal, Mar 10 2013

Keywords

Comments

For the actual numbers, see A031877 and their reversals in A008919. See especially the comments in A008919.

Examples

			The smallest examples of such numbers are 8712 and 9801 (so a(n)=0 for n < 4, a(4) = 2); 87912 and 98901 (so a(5) = 2); and 879912 and 989901 (so a(6) = 2).
		

References

  • W. W. R. Ball and H. S. M. Coxeter. Mathematical Recreations and Essays, Macmillan, New York, 1939, page 13; Dover, New York, 13th ed. 1987, pp. 14-15.
  • H. Camous, Jouer Avec Les Maths, "Cardinaux Réversibles", Section I, Problem 6, pp. 27, 37-38; Les Editions D'Organisation, Paris, 1984.
  • Heinrich Dörrie, Mathematische Miniaturen, Ferdinand Hirt, Breslau, Germany, 1943; see pages 337-339.
  • M. Gardner, Mathematical Magic Show, Vintage Books, 1978, pp. 203, 204, 211, 212.
  • C. A. Grimm and D. W. Ballew, Reversible multiples, J. Rec. Math. 8 (1975-1976), 89-91.
  • D. Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, London, 1986, Entry 1089.

Crossrefs

Programs

  • Magma
    [0] cat [2*Fibonacci(Floor((n-2)/2)): n in [2..60]]; // Vincenzo Librandi, Jun 18 2013
    
  • Mathematica
    Join[{0}, Table[2 Fibonacci[Floor[(n-2)/2]], {n, 2, 60}]] (* Vincenzo Librandi, Jun 18 2013 *)
  • SageMath
    def A214927(n): return 2*(fibonacci((n-2)//2) -int(n==1))
    [A214927(n) for n in range(1,71)] # G. C. Greubel, Oct 23 2024

Formula

a(n) = 2*Fibonacci(floor((n-2)/2)) = 2*A103609(n-2), for n > 1.
G.f.: 2*x^4*(1+x) / (1-x^2-x^4). - Colin Barker, Dec 31 2013

Extensions

Formula, more terms and additional references and links from N. J. A. Sloane, Mar 11 2013

A031877 Nontrivial reversal numbers (numbers which are integer multiples of their reversals), excluding palindromic numbers and multiples of 10.

Original entry on oeis.org

8712, 9801, 87912, 98901, 879912, 989901, 8799912, 9899901, 87128712, 87999912, 98019801, 98999901, 871208712, 879999912, 980109801, 989999901, 8712008712, 8791287912, 8799999912, 9801009801, 9890198901, 9899999901, 87120008712, 87912087912, 87999999912
Offset: 1

Views

Author

Keywords

Comments

The terms of this sequence are sometimes called palintiples.
All terms are of the form 87...12 = 4*21...78 or 98...01 = 9*10...89. [This was proved by Hoey, 1992. - N. J. A. Sloane, Oct 19 2014] More precisely, they are obtained from concatenated copies of either 8712 or 9801, with 9's inserted "in the middle of" these and/or 0's inserted between the copies these, in a symmetrical way. A008919 lists the reversals, but not in the same order, e.g., R(a(2)) < R(a(1)). - M. F. Hasler, Aug 18 2014
There are 2*Fibonacci(floor((n-2)/2)) terms with n digits (this is A214927 or essentially twice A103609). - Ray Chandler, Oct 11 2017

References

  • W. W. R. Ball and H. S. M. Coxeter. Mathematical Recreations and Essays (1939, page 13); 13th ed. New York: Dover, pp. 14-15, 1987.
  • G. H. Hardy, A Mathematician's Apology (Cambridge Univ. Press, 1940, reprinted 2000), pp. 104-105 (describes this problem as having "nothing in [it] which appeals much to a mathematician.").

Crossrefs

See A008919 for reversals (this is the main entry for the problem).
Union of A222814 and A222815.
Subsequence of A118959.

Programs

  • Haskell
    a031877_list = [x | x <- [1..], x `mod` 10 > 0,
                        let x' = a004086 x, x' /= x && x `mod` x' == 0]
    -- Reinhard Zumkeller, Jul 15 2013
    
  • Mathematica
    fQ[n_] := Block[{id = IntegerDigits@n}, Mod[n, FromDigits@ Reverse@id] == 0 && n != FromDigits@ Reverse@ id && Mod[n, 10] > 0]; k = 1; lst = {}; While[k < 10^9, If[fQ@k, AppendTo[lst, k]; Print@k]; k++ ]; lst (* Robert G. Wilson v, Jun 11 2010 *)
    okQ[t_]:=t==Reverse[t]&&First[t]!=0&&Min[Length/@Split[t]]>1; Sort[Flatten[ {(4*198)#,(9*99)#}&/@Flatten[Table[FromDigits/@Select[Tuples[ {0,1},n], okQ],{n,12}]]]] (* Harvey P. Dale, Jul 03 2013 *)
  • PARI
    is_A031877(n)={n%10 && n%A004086(n)==0 && n>A004086(n)} \\ M. F. Hasler, Aug 18 2014
    
  • Python
    A031877 = []
    for n in range(1,10**7):
        if n % 10:
            s1 = str(n)
            s2 = s1[::-1]
            if s1 != s2 and not n % int(s2):
                A031877.append(n) # Chai Wah Wu, Sep 05 2014

Formula

a(n) = A004086(a(n))*[9/(a(n)%10)], where [...]=9 if a(n) ends in "1" and [...]=4 if a(n) ends in "2". - M. F. Hasler, Aug 18 2014

Extensions

More terms from Jud McCranie, Aug 15 2001
More terms from Sam Mathers, Aug 18 2014

A011794 Triangle defined by T(n+1, k) = T(n, k-1) + T(n-1, k), T(n,1) = 1, T(1,k) = 1, T(2,k) = min(2,k).

Original entry on oeis.org

1, 1, 2, 1, 2, 3, 1, 3, 4, 5, 1, 3, 6, 7, 8, 1, 4, 7, 11, 12, 13, 1, 4, 10, 14, 19, 20, 21, 1, 5, 11, 21, 26, 32, 33, 34, 1, 5, 15, 25, 40, 46, 53, 54, 55, 1, 6, 16, 36, 51, 72, 79, 87, 88, 89, 1, 6, 21, 41, 76, 97, 125, 133, 142, 143, 144, 1, 7, 22, 57, 92, 148, 176, 212, 221, 231, 232, 233
Offset: 1

Views

Author

Keywords

Examples

			matrix(10,10,n,k,a(n-1,k-1))
  [ 0 0 0 0 0 0 0 0 0 0 ]
  [ 0 1 1 1 1 1 1 1 1 1 ]
  [ 0 1 2 2 2 2 2 2 2 2 ]
  [ 0 1 2 3 3 3 3 3 3 3 ]
  [ 0 1 3 4 5 5 5 5 5 5 ]
  [ 0 1 3 6 7 8 8 8 8 8 ]
Triangle begins as:
  1;
  1, 2;
  1, 2,  3;
  1, 3,  4,  5;
  1, 3,  6,  7,  8;
  1, 4,  7, 11, 12, 13;
  1, 4, 10, 14, 19, 20, 21;
  1, 5, 11, 21, 26, 32, 33, 34;
  1, 5, 15, 25, 40, 46, 53, 54, 55;
  1, 6, 16, 36, 51, 72, 79, 87, 88, 89;
		

Crossrefs

Columns include A008619 and (essentially) A055802, A055803, A055804, A055805, A055806.
Essentially a reflected version of A055801.
Sums include: A039834 (signed row), A131913 (row).

Programs

  • Magma
    function T(n,k) // T = A011794(n,k)
      if k eq 1 or n eq 1 then return 1;
      elif n eq 2 then return Min(2, k);
      else return T(n-1,k-1) + T(n-2,k);
      end if;
    end function;
    [T(n,k): k in [1..n], n in [1..15]]; // G. C. Greubel, Oct 21 2024
    
  • Mathematica
    T[n_, k_]:= T[n, k]= T[n-1, k-1] + T[n-2, k]; T[n_, 1] = 1; T[1, k_] = 1; T[2, k_] := Min[2, k]; Table[T[n, k], {n,15}, {k,n}]//Flatten (* Jean-François Alcover, Feb 26 2013 *)
  • PARI
    T(n,k)=if(n<=0 || k<=0,0, if(n<=2 || k==1, min(n,k), T(n-1,k-1)+T(n-2,k)))
    
  • SageMath
    def T(n, k): # T = A011794
        if (k==1 or n==1): return 1
        elif (n==2): return min(2,k)
        else: return T(n-1, k-1) + T(n-2, k)
    flatten([[T(n, k) for k in range(1,n+1)] for n in range(1,16)]) # G. C. Greubel, Oct 21 2024

Formula

T(n,n) = Fibonacci(n+1). - Jean-François Alcover, Feb 26 2013
From G. C. Greubel, Oct 21 2024: (Start)
Sum_{k=1..n} T(n, k) = A131913(n-1).
Sum_{k=1..n} (-1)^(k-1)*T(n, k) = A039834(n).
Sum_{k=1..floor((n+1)/2)} T(n-k+1,k) = (1/2)*((1-(-1)^n)*A074878((n+3)/2) + (1+(-1)^n)*A008466((n+6)/2)) (diagonal row sums).
Sum_{k=1..floor((n+1)/2)} (-1)^(k-1)*T(n-k+1,k) = (-1)^floor((n-1)/2)*A103609(n) + [n=1] (signed diagonal row sums). (End)

Extensions

Entry improved by comments from Michael Somos
More terms added by G. C. Greubel, Oct 21 2024

A008918 Numbers k such that 4*k = (k written backwards), k > 0.

Original entry on oeis.org

2178, 21978, 219978, 2199978, 21782178, 21999978, 217802178, 219999978, 2178002178, 2197821978, 2199999978, 21780002178, 21978021978, 21999999978, 217800002178, 217821782178, 219780021978, 219978219978, 219999999978, 2178000002178, 2178219782178
Offset: 1

Views

Author

Keywords

Comments

There are Fibonacci(floor((k-2)/2)) terms with k digits (this is essentially A103609). - Ray Chandler, Oct 12 2017

References

  • Alfred S. Posamentier, Math Charmers, Tantalizing Tidbits for the Mind, Prometheus Books, NY, 2003, pages 41-42.
  • D. Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986.

Crossrefs

Programs

  • Mathematica
    Rest@Select[FromDigits /@ Tuples[{0, 198}, 11], IntegerDigits[4*#] == Reverse@IntegerDigits[#] &] (* Arkadiusz Wesolowski, Aug 14 2012 *)
    okQ[t_]:=t==Reverse[t]&&First[t]!=0&&Min[Length/@Split[t]]>1; 198#&/@ Flatten[ Table[FromDigits/@Select[Tuples[{0,1},n],okQ],{n,20}]] (* Harvey P. Dale, Jul 03 2013 *)
  • PARI
    rev(n) = (eval(concat(Vecrev(Str(n)))));
    isok(n) = rev(n) == 4*n; \\ Michel Marcus, Sep 13 2015

Formula

Theorem (David W. Wilson): a(n) = 2*A001232(n).

Extensions

Corrected and extended by David W. Wilson Aug 15 1996, Dec 15 1997
a(20)-a(21) from Arkadiusz Wesolowski, Aug 14 2012

A008919 Numbers k such that k written backwards is a nontrivial multiple of k.

Original entry on oeis.org

1089, 2178, 10989, 21978, 109989, 219978, 1099989, 2199978, 10891089, 10999989, 21782178, 21999978, 108901089, 109999989, 217802178, 219999978, 1089001089, 1098910989, 1099999989, 2178002178, 2197821978, 2199999978, 10890001089
Offset: 1

Views

Author

Keywords

Comments

There are 2*Fibonacci(floor((n-2)/2)) terms with n digits (this is A214927 or essentially twice A103609). - N. J. A. Sloane, Mar 20 2013
All terms are made of "symmetric" concatenations of 1089 and/or 2178, with an arbitrary numbers of 9's inserted in the middle of these and 0's inserted between them. See A031877 for the reversals and further information: union of the two, sequences "made of" 1089 or 2178 only. - M. F. Hasler, Jun 23 2019
Also: 99 times A061852: numbers that are palindromic, have only digits in {0, 1} or in {0, 2}, and no isolated ("single") digit. - M. F. Hasler, Oct 17 2022

References

  • W. W. R. Ball and H. S. M. Coxeter. Mathematical Recreations and Essays (1939, page 13); 13th ed. New York: Dover, pp. 14-15, 1987.
  • Gardiner, Anthony, and A. D. Gardiner. Discovering mathematics: The art of investigation. Oxford University Press, 1987.
  • G. H. Hardy, A Mathematician's Apology (Cambridge Univ. Press, 1940, reprinted 2000), pp. 104-105 (describes this problem as having "nothing in [it] which appeals much to a mathematician").
  • D. Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986.

Crossrefs

Cf. A001232 (9k = R(k)), A004086 (R(n): reverse), A008918 (4k = R(k)), A214927, A103609 (Fibonacci([n/2])). Reversals are in A031877.

Programs

  • Haskell
    a008919 n = a008919_list !! (n-1)
    a008919_list = [x | x <- [1..],
                        let (x',m) = divMod (a004086 x) x, m == 0, x' > 1]
    -- Reinhard Zumkeller, Feb 03 2012
    
  • Mathematica
    Reap[ Do[ If[ Reverse[ IntegerDigits[n]] == IntegerDigits[4*n], Print[n]; Sow[n]]; If[ Reverse[ IntegerDigits[n + 11]] == IntegerDigits[9*(n + 11)], Print[n + 11]; Sow[n + 11]], {n, 78, 2*10^10, 100}]][[2, 1]] (* Jean-François Alcover, Jun 19 2012, after David W. Wilson, assuming n congruent to 78 or 89 mod 100 *)
    okQ[t_]:=t==Reverse[t]&&First[t]!=0&&Min[Length/@Split[t]]>1; Sort[ Flatten[ {99#, 198#}&/@Flatten[Table[FromDigits/@Select[Tuples[ {0,1},n], okQ],{n,10}]]]] (* Harvey P. Dale, Jul 03 2013 *)
  • PARI
    is_A008919(n,r=A004086(n))={n>r && n%r==0} \\ M. F. Hasler, Jun 23 2019

Formula

If reverse(n) = k*n in base 10, then k = 1, 4 or 9 [Klosinski and Smolarski]. Hence A008919 is the union of A001232 and A008918. - David W. Wilson
a(n) = 99*A061852(n). - M. F. Hasler, Oct 17 2022

Extensions

Corrected and extended by David W. Wilson Aug 15 1996, Dec 15 1997

A192904 Constant term in the reduction by (x^2 -> x + 1) of the polynomial p(n,x) defined below at Comments.

Original entry on oeis.org

1, 0, 1, 5, 16, 49, 153, 480, 1505, 4717, 14784, 46337, 145233, 455200, 1426721, 4471733, 14015632, 43928817, 137684905, 431542080, 1352570689, 4239325789, 13287204352, 41645725825, 130529073953, 409113752000, 1282274186177
Offset: 0

Views

Author

Clark Kimberling, Jul 12 2011

Keywords

Comments

The titular polynomial is defined by p(n,x) = (x^2)*p(n-1,x) + x*p(n-2,x), with p(0,x) = 1, p(1,x) = x. The resulting sequence typifies a general class which we shall describe here. Suppose that u,v,a,b,c,d,e,f are numbers used to define these polynomials:
...
q(x) = x^2
s(x) = u*x + v
p(0,x) = a, p(1,x) = b*x + c
p(n,x) = d*(x^2)*p(n-1,x) + e*x*p(n-2,x) + f.
...
We shall assume that u is not 0 and that {d,e} is not {0}. The reduction of p(n,x) by the repeated substitution q(x) -> s(x), as defined and described at A192232 and A192744, has the form h(n) + k(n)*x. The numerical sequences h and k are linear recurrence sequences, formally of order 5. The Mathematica program below, with first line deleted, shows initial terms and recurrence coefficients, which imply these properties:
(1) the recurrence coefficients depend only on u,v,d,e; the parameters a,b,c,f affect only the initial terms.
(2) if e=0 or v=0, the order of recurrence is <= 3;
(3) if e=0 and v=0, the recurrence coefficients are 1+d*u^2 and -d*u^2 (cf. similar results at A192872).
...
Examples:
u v a b c d e f... seq h.....seq k
1 1 1 1 1 1 0 0... A001906..A001519
1 1 1 1 0 0 1 0... A103609..A193609
1 1 1 1 0 1 1 0... A192904..A192905
1 1 1 1 1 1 0 0... A001519..A001906
1 1 1 1 1 1 1 0... A192907..A192907
1 1 1 1 1 1 0 1... A192908..A069403
1 1 1 1 1 1 1 1... A192909..A192910
The terms of these sequences involve Fibonacci numbers, F(n)=A000045(n); e.g.,
A001906: even-indexed F(n)
A001519: odd-indexed F(n)
A103609: (1,1,1,1,2,2,3,3,5,5,8,8,...)

Examples

			The first six polynomials and reductions:
1 -> 1
x -> x
x + x^3 -> 1 + 3*x
x^2 + x^3 + x^5 -> 5 + 8*x
x^2 + 2*x^4 + x^5 + x^7 -> 16 + 25*x
x^3 + 2*x^4 + 3*x^6 + x^7 + x^9 -> 49 + 79*x, so that
A192904 = (1,0,1,5,16,49,...) and
A192905 = (0,1,3,8,25,79,...)
		

Crossrefs

Programs

  • GAP
    a:=[1,0,1,5];; for n in [5..40] do a[n]:=3*a[n-1]+a[n-3]+a[n-4]; od; a; # G. C. Greubel, Jan 10 2019
  • Magma
    m:=40; R:=PowerSeriesRing(Integers(), m); Coefficients(R!( (1-x)*(1-2*x-x^2)/(1-3*x-x^3-x^4) )); // G. C. Greubel, Jan 10 2019
    
  • Mathematica
    (* To obtain general results, delete the next line. *)
    u = 1; v = 1; a = 1; b = 1; c = 0; d = 1; e = 1; f = 0;
    q = x^2; s = u*x + v; z = 24;
    p[0, x_] := a; p[1, x_] := b*x + c;
    p[n_, x_] :=  d*(x^2)*p[n - 1, x] + e*x*p[n - 2, x] + f;
    Table[Expand[p[n, x]], {n, 0, 8}]
    reduce[{p1_, q_, s_, x_}]:= FixedPoint[(s PolynomialQuotient @@ #1 + PolynomialRemainder @@ #1 &)[{#1, q, x}] &, p1]
    t = Table[reduce[{p[n, x], q, s, x}], {n, 0, z}];
    u0 = Table[Coefficient[Part[t, n], x, 0], {n, 1, z}] (* A192904 *)
    u1 = Table[Coefficient[Part[t, n], x, 1], {n, 1, z}] (* A192905 *)
    Simplify[FindLinearRecurrence[u0]] (* recurrence for 0-sequence *)
    Simplify[FindLinearRecurrence[u1]] (* recurrence for 1-sequence *)
    LinearRecurrence[{3,0,1,1}, {1,0,1,5}, 40] (* G. C. Greubel, Jan 10 2019 *)
  • PARI
    my(x='x+O('x^40)); Vec((1-x)*(1-2*x-x^2)/(1-3*x-x^3-x^4)) \\ G. C. Greubel, Jan 10 2019
    
  • Sage
    ((1-x)*(1-2*x-x^2)/(1-3*x-x^3-x^4)).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, Jan 10 2019
    

Formula

a(n) = 3*a(n-1) + a(n-3) + a(n-4).
G.f.: (1-x)*(1-2*x-x^2)/(1-3*x-x^3-x^4). - Colin Barker, Aug 31 2012

A222814 Numbers (not ending in 0) which are 9 times their digit-reversal.

Original entry on oeis.org

9801, 98901, 989901, 9899901, 98019801, 98999901, 980109801, 989999901, 9801009801, 9890198901, 9899999901, 98010009801, 98901098901, 98999999901, 980100009801, 980198019801, 989010098901, 989901989901, 989999999901, 9801000009801, 9801989019801, 9890100098901
Offset: 1

Views

Author

N. J. A. Sloane, Mar 11 2013

Keywords

Comments

There are Fibonacci(floor((n-2)/2)) terms with n digits (this is essentially A103609). - Ray Chandler, Oct 12 2017

Crossrefs

Equals 9*A001232.

Programs

  • Mathematica
    okQ[t_]:=t==Reverse[t]&&First[t]!=0&&Min[Length/@Split[t]]>1; Sort[ Flatten[ (9*99)#&/@Flatten[Table[FromDigits/@Select[Tuples[{0,1},n],okQ],{n,12}]]]] (* Harvey P. Dale, Jul 03 2013 *)

A101704 Numbers n such that reversal(n)=2n/3.

Original entry on oeis.org

0, 6534, 65934, 659934, 6599934, 65346534, 65999934, 653406534, 659999934, 6534006534, 6593465934, 6599999934, 65340006534, 65934065934, 65999999934, 653400006534, 653465346534, 659340065934, 659934659934, 659999999934, 6534000006534, 6534659346534, 6593400065934, 6599340659934, 6599999999934
Offset: 1

Views

Author

Farideh Firoozbakht, Dec 31 2004

Keywords

Comments

If n=0 or n>1 then 66*(10^n-1) is in the sequence (the first five terms of this sequence are of this form) so this sequence is infinite. Let g(s,t,r) be (s.(0)(t))(r).s where dot between numbers means concatenation and "(m)(n)" means number of m's is n, for example g(2005,1,2)=20050200502005. It is interesting that, if n is in the sequence then all numbers of the form g(n,t,r) for nonnegative integers t and r are in the sequence, for example since 6534 is in the sequence so g(6534,1,2)=(6534.(0)(1))(2).6534=65340653406534 is in the sequence.
It seems that all similar sequences (sequences with the definition "numbers n such that reversal(n) =r*n for a fixed rational number r" ) have the same property (see A101705 and A101706). All sequences of the form 10^s*A002113 are in this category.
There are Fibonacci(floor((n-2)/2)) terms with n digits, n>1 (this is essentially A103609). - Ray Chandler, Oct 12 2017

Examples

			g(65934,3,4)=6593400065934000659340006593400065934 is in the sequence
because reversal(6593400065934000659340006593400065934)
= 4395600043956000439560004395600043956
=2/3*6593400065934000659340006593400065934.
		

Crossrefs

Programs

  • Mathematica
    Do[If[FromDigits[Reverse[IntegerDigits[n]]] == 2/3*n, Print[n]], {n, 150000000}]

Extensions

a(8)-a(25) from Max Alekseyev, Aug 18 2013

A222815 Numbers (not ending in 0) which are 4 times their digit-reversal.

Original entry on oeis.org

8712, 87912, 879912, 8799912, 87128712, 87999912, 871208712, 879999912, 8712008712, 8791287912, 8799999912, 87120008712, 87912087912, 87999999912, 871200008712, 871287128712, 879120087912, 879912879912, 879999999912, 8712000008712, 8712879128712, 8791200087912
Offset: 1

Views

Author

N. J. A. Sloane, Mar 11 2013

Keywords

Comments

There are Fibonacci(floor((n-2)/2)) terms with n digits (this is essentially A103609). - Ray Chandler, Oct 12 2017

Crossrefs

Equals 4*A008918.

Programs

  • Mathematica
    okQ[t_]:=t==Reverse[t]&&First[t]!=0&&Min[Length/@Split[t]]>1; Sort[Flatten[ (4*198)#&/@Flatten[Table[FromDigits/@Select[Tuples[{0,1},n],okQ],{n,12}]]]] (* Harvey P. Dale, Jul 03 2013 *)
Showing 1-10 of 23 results. Next