A121364 Convolution of A066983 with the double Fibonacci sequence A103609.
0, 0, 1, 2, 3, 6, 10, 18, 29, 50, 81, 136, 220, 364, 589, 966, 1563, 2550, 4126, 6710, 10857, 17622, 28513, 46224, 74792, 121160, 196041, 317434, 513619, 831430, 1345282, 2177322, 3522981, 5701290, 9224881, 14927768, 24153636, 39083988, 63239221, 102327390
Offset: 1
Examples
a(7)=10 because F(7)=13 and D(8)=3 and a(7)=F(7)-D(8).
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (1,2,-1,0,-1,-1).
Programs
-
Magma
A121364:= func< n | Fibonacci(n) - Fibonacci(Floor((n+1)/2)) >; [A121364(n): n in [1..70]]; // G. C. Greubel, Oct 23 2024
-
Mathematica
LinearRecurrence[{1,2,-1,0,-1,-1},{0, 0, 1, 2, 3, 6},40] (* James C. McMahon, Oct 17 2024 *)
-
PARI
concat([0,0], Vec(-x^3*(x^2-x-1)/((x^2+x-1)*(x^4+x^2-1)) + O(x^100))) \\ Colin Barker, Oct 13 2014
-
SageMath
def A121364(n): return fibonacci(n) - fibonacci((n+1)//2) [A121364(n) for n in range(1,71)] # G. C. Greubel, Oct 23 2024
Formula
a(n) = F(n) - D(n+1), where F is the Fibonacci sequence (A000045) and D is "A double Fibonacci sequence" (A103609).
G.f.: x^3*(1+x-x^2) / ((1-x-x^2)*(1-x^2-x^4)). - Colin Barker, Oct 13 2014
Extensions
More terms from Colin Barker, Oct 13 2014
Comments