A101705
Numbers n such that n = 12*reversal(n).
Original entry on oeis.org
0, 540, 5940, 54540, 59940, 540540, 599940, 5400540, 5454540, 5945940, 5999940, 54000540, 54594540, 59405940, 59999940, 540000540, 540540540, 545454540, 545994540, 594005940, 594545940, 599459940, 599999940, 5400000540, 5405940540, 5454054540, 5459994540, 5940005940, 5945945940, 5994059940, 5999999940
Offset: 1
g(540,0,5)= (540)(6) = 540540540540540540 is in the sequence because reversal(540540540540540540) = 45045045045045045 and 12*45045045045045045 = 540540540540540540.
-
Do[If[n == 12*FromDigits[Reverse[IntegerDigits[n]]], Print[n]], {n, 0, 6000000000, 60}]
Select[Range[0,6*10^9,60],#==12IntegerReverse[#]&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Apr 12 2017 *)
-
def A101705(n):
if n == 1: return 0
a = 1<Chai Wah Wu, Jul 23 2024
A101706
Numbers n such that reversal(n)=(7/3)*n.
Original entry on oeis.org
0, 3267, 32967, 329967, 3299967, 32673267, 32999967, 326703267, 329999967, 3267003267, 3296732967, 3299999967, 32670003267, 32967032967, 32999999967, 326700003267, 326732673267, 329670032967, 329967329967, 329999999967, 3267000003267, 3267329673267, 3296700032967, 3299670329967, 3299999999967
Offset: 1
g(3267,10,2) = 32670000000000326700000000003267 is in the sequence
because reversal(32670000000000326700000000003267) =
76230000000000762300000000007623 =
(7/3)*32670000000000326700000000003267, g(3267,0,4) =
32673267326732673267 is in the sequence because
reversal(32673267326732673267) = 76237623762376237623 =
(7/3)*32673267326732673267.
A101703
Numbers n such that reversal(n) = (2/3)*n - 2.
Original entry on oeis.org
21, 291, 885, 2991, 29991, 234651, 299991, 2340651, 2999991, 8221845, 23400651, 29346591, 29999991, 234000651, 293406591, 299999991, 2340000651, 2346534651, 2934006591, 2993465991, 2999999991, 23400000651, 23465934651, 29340006591, 29934065991, 29999999991, 82277815845, 234000000651
Offset: 1
f(0,1,2,3) = 2934006534006534006591 is in the sequence because reversal(2934006534006534006591) = 1956004356004356004392 = (2/3)*2934006534006534006591-2.
A102277
Numbers n such that n = 15*reversal(n).
Original entry on oeis.org
0, 65340, 659340, 6599340, 65999340, 653465340, 659999340, 6534065340, 6599999340, 65340065340, 65934659340, 65999999340, 653400065340, 659340659340, 659999999340, 6534000065340, 6534653465340, 6593400659340, 6599346599340, 6599999999340
Offset: 1
g(65340,0,2)= (65340)(3) = 653406534065340 is in the sequence because reversal(653406534065340) = 43560435604356 = (1/15)*653406534065340.
-
Do[If[n == 15*FromDigits[Reverse[IntegerDigits[n]]], Print[n]], {n, 0, 11000000000, 30}]
A285040
Numbers n such that three-halves of n equals the reverse of n.
Original entry on oeis.org
4356, 43956, 439956, 4399956, 43564356, 43999956, 435604356, 439999956, 4356004356, 4395643956, 4399999956, 43560004356, 43956043956, 43999999956, 435600004356, 435643564356, 439560043956, 439956439956, 439999999956
Offset: 1
439956 times 3/2 equals 659934 which is the reverse of 439956.
- David Wells, The Penguin Dictionary of Curious and Interesting Numbers (Rev. ed. 1997), p. 158.
-
Select[2 Range[10^7], 3(#/2) == FromDigits@ Reverse@ IntegerDigits@ # &] (* Giovanni Resta, Apr 08 2017 *)
-
isok(n) = 3*n/2 == fromdigits(Vecrev(digits(n))); \\ Michel Marcus, Apr 09 2017
Showing 1-5 of 5 results.
Comments