A101704
Numbers n such that reversal(n)=2n/3.
Original entry on oeis.org
0, 6534, 65934, 659934, 6599934, 65346534, 65999934, 653406534, 659999934, 6534006534, 6593465934, 6599999934, 65340006534, 65934065934, 65999999934, 653400006534, 653465346534, 659340065934, 659934659934, 659999999934, 6534000006534, 6534659346534, 6593400065934, 6599340659934, 6599999999934
Offset: 1
g(65934,3,4)=6593400065934000659340006593400065934 is in the sequence
because reversal(6593400065934000659340006593400065934)
= 4395600043956000439560004395600043956
=2/3*6593400065934000659340006593400065934.
A101706
Numbers n such that reversal(n)=(7/3)*n.
Original entry on oeis.org
0, 3267, 32967, 329967, 3299967, 32673267, 32999967, 326703267, 329999967, 3267003267, 3296732967, 3299999967, 32670003267, 32967032967, 32999999967, 326700003267, 326732673267, 329670032967, 329967329967, 329999999967, 3267000003267, 3267329673267, 3296700032967, 3299670329967, 3299999999967
Offset: 1
g(3267,10,2) = 32670000000000326700000000003267 is in the sequence
because reversal(32670000000000326700000000003267) =
76230000000000762300000000007623 =
(7/3)*32670000000000326700000000003267, g(3267,0,4) =
32673267326732673267 is in the sequence because
reversal(32673267326732673267) = 76237623762376237623 =
(7/3)*32673267326732673267.
A193434
6*n/5 = (n written backwards), n > 0.
Original entry on oeis.org
45, 495, 4545, 4995, 45045, 49995, 450045, 454545, 495495, 499995, 4500045, 4549545, 4950495, 4999995, 45000045, 45045045, 45454545, 45499545, 49500495, 49545495, 49954995, 49999995, 450000045, 450495045, 454504545, 454999545, 495000495, 495495495, 499504995
Offset: 1
495 belongs to this sequence because 6*495/5 = 594.
-
Rest@Select[FromDigits /@ Tuples[{0, 45}, 8], IntegerDigits[6*#/5] == Reverse@IntegerDigits[#] &] (* Arkadiusz Wesolowski, Aug 14 2012 *)
-
def A193434(n):
a = 1<<(m:=n+1).bit_length()-2
s = bin(a|(m&a-1))[2:]
return 45*int(s+(s[::-1] if a&m else s[-2::-1])) # Chai Wah Wu, Jul 23 2024
A102277
Numbers n such that n = 15*reversal(n).
Original entry on oeis.org
0, 65340, 659340, 6599340, 65999340, 653465340, 659999340, 6534065340, 6599999340, 65340065340, 65934659340, 65999999340, 653400065340, 659340659340, 659999999340, 6534000065340, 6534653465340, 6593400659340, 6599346599340, 6599999999340
Offset: 1
g(65340,0,2)= (65340)(3) = 653406534065340 is in the sequence because reversal(653406534065340) = 43560435604356 = (1/15)*653406534065340.
-
Do[If[n == 15*FromDigits[Reverse[IntegerDigits[n]]], Print[n]], {n, 0, 11000000000, 30}]
A285040
Numbers n such that three-halves of n equals the reverse of n.
Original entry on oeis.org
4356, 43956, 439956, 4399956, 43564356, 43999956, 435604356, 439999956, 4356004356, 4395643956, 4399999956, 43560004356, 43956043956, 43999999956, 435600004356, 435643564356, 439560043956, 439956439956, 439999999956
Offset: 1
439956 times 3/2 equals 659934 which is the reverse of 439956.
- David Wells, The Penguin Dictionary of Curious and Interesting Numbers (Rev. ed. 1997), p. 158.
-
Select[2 Range[10^7], 3(#/2) == FromDigits@ Reverse@ IntegerDigits@ # &] (* Giovanni Resta, Apr 08 2017 *)
-
isok(n) = 3*n/2 == fromdigits(Vecrev(digits(n))); \\ Michel Marcus, Apr 09 2017
Showing 1-5 of 5 results.
Comments