A000071
a(n) = Fibonacci(n) - 1.
Original entry on oeis.org
0, 0, 1, 2, 4, 7, 12, 20, 33, 54, 88, 143, 232, 376, 609, 986, 1596, 2583, 4180, 6764, 10945, 17710, 28656, 46367, 75024, 121392, 196417, 317810, 514228, 832039, 1346268, 2178308, 3524577, 5702886, 9227464, 14930351, 24157816, 39088168, 63245985, 102334154
Offset: 1
- A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, id. 1.
- GCHQ, The GCHQ Puzzle Book, Penguin, 2016. See page 28.
- M. Kauers and P. Paule, The Concrete Tetrahedron, Springer 2011, p. 64.
- D. E. Knuth, The Art of Computer Programming, Vol. 3, 2nd edition, Addison-Wesley, Reading, MA, 1998, p. 417.
- J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 155.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- J. L. Yucas, Counting special sets of binary Lyndon words, Ars Combin., 31 (1991), 21-29.
- Christian G. Bower, Table of n, a(n) for n = 1..500
- Isha Agarwal, Matvey Borodin, Aidan Duncan, Kaylee Ji, Tanya Khovanova, Shane Lee, Boyan Litchev, Anshul Rastogi, Garima Rastogi, and Andrew Zhao, From Unequal Chance to a Coin Game Dance: Variants of Penney's Game, arXiv:2006.13002 [math.HO], 2020.
- Ricardo Gómez Aíza, Symbolic dynamical scales: modes, orbitals, and transversals, arXiv:2009.02669 [math.DS], 2020.
- Kassie Archer and Noel Bourne, Pattern avoidance in compositions and powers of permutations, arXiv:2505.05218 [math.CO], 2025. See pp. 6-7.
- Kassie Archer and Aaron Geary, Powers of permutations that avoid chains of patterns, arXiv:2312.14351 [math.CO], 2023. See p. 15.
- Mohammad K. Azarian, The Generating Function for the Fibonacci Sequence, Missouri Journal of Mathematical Sciences, Vol. 2, No. 2, Spring 1990, pp. 78-79. Zentralblatt MATH, Zbl 1097.11516.
- Mohammad K. Azarian, A Generalization of the Climbing Stairs Problem II, Missouri Journal of Mathematical Sciences, Vol. 16, No. 1, Winter 2004, pp. 12-17.
- J.-L. Baril and J.-M. Pallo, Motzkin subposet and Motzkin geodesics in Tamari lattices, 2013.
- Erik Bates, Blan Morrison, Mason Rogers, Arianna Serafini, and Anav Sood, A new combinatorial interpretation of partial sums of m-step Fibonacci numbers, arXiv:2503.11055 [math.CO], 2025. See pp. 1-2.
- Andrew M. Baxter and Lara K. Pudwell, Ascent sequences avoiding pairs of patterns, 2014.
- Serge Burckel, Syntactical methods for braids of three strands, J. Symbolic Comput. 31 (2001), no. 5, 557-564.
- Alexander Burstein and Toufik Mansour, Counting occurrences of some subword patterns, arXiv:math/0204320 [math.CO], 2002-2003.
- Peter J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
- Fan Chung and R. L. Graham, Primitive juggling sequences, Am. Math. Monthly 115 (3) (2008) 185-194.
- Ligia Loretta Cristea, Ivica Martinjak, and Igor Urbiha, Hyperfibonacci Sequences and Polytopic Numbers, arXiv:1606.06228 [math.CO], 2016.
- Michael Dairyko, Samantha Tyner, Lara Pudwell, and Casey Wynn, Non-contiguous pattern avoidance in binary trees. Electron. J. Combin. 19 (2012), no. 3, Paper 22, 21 pp. MR2967227. - From _N. J. A. Sloane_, Feb 01 2013
- Emeric Deutsch, Problem Q915, Math. Magazine, vol. 74, No. 5, 2001, p. 404.
- Christian Ennis, William Holland, Omer Mujawar, Aadit Narayanan, Frank Neubrander, Marie Neubrander, and Christina Simino, Words in Random Binary Sequences I, arXiv:2107.01029 [math.GM], 2021.
- Taras Goy and Mark Shattuck, Toeplitz-Hessenberg determinant formulas for the sequence F_n-1, Online J. Anal. Comb. 19 (2024), no. 19, Paper #1, 27 pp.
- Fumio Hazama, Spectra of graphs attached to the space of melodies, Discrete Math., 311 (2011), 2368-2383. See Table 2.1.
- Yasuichi Horibe, An entropy view of Fibonacci trees, Fibonacci Quarterly, 20, No. 2, 1982, 168-178. [From _Emeric Deutsch_, Jun 14 2010]
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 384
- Dov Jarden, Recurring Sequences, Riveon Lematematika, Jerusalem, 1966. [Annotated scanned copy] See p. 96.
- Scott O. Jones and P. Mark Kayll, Constructing Edge-labellings of K_n, with Constant-length Hamilton Cycles, J. Comb. Math. Comb. Comp. (2006) Vol. 57, pp. 83-95. See p. 92.
- Tamara Kogan, L. Sapir, A. Sapir, and A. Sapir, The Fibonacci family of iterative processes for solving nonlinear equations, Applied Numerical Mathematics 110 (2016) 148-158.
- Alexander S. Kulikov, Find Local Maximum in an Integer Sequence, Puzzling Stack Exchange, 2020.
- René Lagrange, Quelques résultats dans la métrique des permutations, Annales Scientifiques de l'Ecole Normale Supérieure, Paris, 79 (1962), 199-241.
- D. A. Lind, On a class of nonlinear binomial sums, Fib. Quart., 3 (1965), 292-298.
- Rui Liu and Feng-Zhen Zhao, On the Sums of Reciprocal Hyperfibonacci Numbers and Hyperlucas Numbers, Journal of Integer Sequences, Vol. 15 (2012), #12.4.5. - From _N. J. A. Sloane_, Oct 05 2012
- Megan A. Martinez and Carla D. Savage, Patterns in Inversion Sequences II: Inversion Sequences Avoiding Triples of Relations, arXiv:1609.08106 [math.CO], 2016.
- El-Mehdi Mehiri, Saad Mneimneh, and Hacène Belbachir, The Towers of Fibonacci, Lucas, Pell, and Jacobsthal, arXiv:2502.11045 [math.CO], 2025. See p. 12.
- Augustine O. Munagi, Set Partitions with Successions and Separations,IJMMS 2005:3 (2005), 451-463.
- Sam Northshield, Stern's Diatomic Sequence 0,1,1,2,1,3,2,3,1,4,..., Amer. Math. Month., Vol. 117 (7), pp. 581-598, 2010.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- Lara Pudwell, Pattern avoidance in trees, (slides from a talk, mentions many sequences), 2012.
- Lara Pudwell, Pattern-avoiding ascent sequences, Slides from a talk, 2015.
- Stacey Wagner, Enumerating Alternating Permutations with One Alternating Descent, DePaul Discoveries: Vol. 2: Iss. 1, Article 2.
- Hsin-Po Wang and Chi-Wei Chin, On Counting Subsequences and Higher-Order Fibonacci Numbers, arXiv:2405.17499 [cs.IT], 2024. See p. 2.
- Arthur T. White, Ringing the changes, Math. Proc. Cambridge Philos. Soc. 94 (1983), no. 2, 203-215.
- Peijun Xu, Growth of positive braids semigroups, Journal of Pure and Applied Algebra, 1992.
- J. L. Yucas, Counting special sets of binary Lyndon words, Ars Combin., 31 (1991), 21-29. (Annotated scanned copy)
- Jianqiang Zhao, Uniform Approach to Double Shuffle and Duality Relations of Various q-Analogs of Multiple Zeta Values via Rota-Baxter Algebras, arXiv preprint arXiv:1412.8044 [math.NT], 2014. See Table 9, line 1.
- Li-Na Zheng, Rui Liu, and Feng-Zhen Zhao, On the Log-Concavity of the Hyperfibonacci Numbers and the Hyperlucas Numbers, Journal of Integer Sequences, Vol. 17 (2014), #14.1.4.
- Index entries for linear recurrences with constant coefficients, signature (2,0,-1).
Antidiagonal sums of array
A004070.
Right-hand column 2 of triangle
A011794.
-
a000071 n = a000071_list !! n
a000071_list = map (subtract 1) $ tail a000045_list
-- Reinhard Zumkeller, May 23 2013
-
[Fibonacci(n)-1: n in [1..60]]; // Vincenzo Librandi, Apr 04 2011
-
A000071 := proc(n) combinat[fibonacci](n)-1 ; end proc; # R. J. Mathar, Apr 07 2011
a:= n-> (Matrix([[1, 1, 0], [1, 0, 0], [1, 0, 1]])^(n-1))[3, 2]; seq(a(n), n=1..50); # Alois P. Heinz, Jul 24 2008
-
Fibonacci[Range[40]] - 1 (* or *) LinearRecurrence[{2, 0, -1}, {0, 0, 1}, 40] (* Harvey P. Dale, Aug 23 2013 *)
Join[{0}, Accumulate[Fibonacci[Range[0, 39]]]] (* Alonso del Arte, Oct 22 2017, based on Giorgi Dalakishvili's formula *)
-
{a(n) = if( n<1, 0, fibonacci(n)-1)};
-
[fibonacci(n)-1 for n in range(1,60)] # G. C. Greubel, Oct 21 2024
A001911
a(n) = Fibonacci(n+3) - 2.
Original entry on oeis.org
0, 1, 3, 6, 11, 19, 32, 53, 87, 142, 231, 375, 608, 985, 1595, 2582, 4179, 6763, 10944, 17709, 28655, 46366, 75023, 121391, 196416, 317809, 514227, 832038, 1346267, 2178307, 3524576, 5702885, 9227463, 14930350, 24157815, 39088167, 63245984
Offset: 0
G.f. = x + 3*x^2 + 6*x^3 + 11*x^4 + 19*x^5 + 32*x^6 + 53*x^7 + 87*x^8 + ...
- J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 233.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Charles R Greathouse IV, Table of n, a(n) for n = 0..4783 (next term has 1001 digits)
- Stefano Bilotta, Variable-length Non-overlapping Codes, arXiv preprint arXiv:1605.03785 [cs.IT], 2016.
- D. J. Broadhurst, On the enumeration of irreducible k-fold Euler sums and their roles in knot theory and field theory, arXiv:hep-th/9604128, 1996.
- C. Dalfó, G. Erskine, G. Exoo, M. A. Fiol, N. López, A. Messegué, and J. Tuite, On large regular (1,1,k)-mixed graphs, Discrete Appl. Math. 356 (2024), 209-228.
- Ricardo Gómez Aíza, Trees with flowers: A catalog of integer partition and integer composition trees with their asymptotic analysis, arXiv:2402.16111 [math.CO], 2024. See p. 23.
- K. Viswanathan Iyer and K. R. Uday Kumar Reddy, Wiener index of binomial trees and Fibonacci trees, arXiv:0910.4432 [cs.DM], 2009. (Corrigendum: Eq.(23) to be corrected as follows on the right-side: in the fourth term F(k)-1 should be replaced by F(k); a term F(k)*F(K+1)-1 is to be included; pointed out by Emeric Deutsch).
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- M. Rigo, P. Salimov, and E. Vandomme, Some Properties of Abelian Return Words, Journal of Integer Sequences, Vol. 16 (2013), #13.2.5.
- D. G. Rogers, An application of renewal sequences to the dimer problem, pp. 142-153 of Combinatorial Mathematics VI (Armidale 1978), Lect. Notes Math. 748, 1979.
- Wolfdieter Lang, Notes on certain inhomogeneous three term recurrences, 2010.
- Index entries for linear recurrences with constant coefficients, signature (2,0,-1).
Cf.
A001611,
A000071,
A157725,
A001911,
A157726,
A006327,
A157727,
A157728,
A157729,
A167616. [Added by
N. J. A. Sloane, Jun 25 2010 in response to a comment from
Aviezri S. Fraenkel]
Right-hand column 3 of triangle
A011794.
-
a001911 n = a001911_list !! n
a001911_list = 0 : 1 : map (+ 2) (zipWith (+) a001911_list $ tail a001911_list)
-- Reinhard Zumkeller, Jun 18 2013
-
[(Fibonacci(n+3))-2: n in [0..85]]; // Vincenzo Librandi, Apr 23 2011
-
a[0]:=0:a[1]:=1:for n from 2 to 50 do a[n]:=a[n-1]+a[n-2]+2 od: seq(a[n],n=0..50); # Miklos Kristof, Mar 09 2005
A001911:=(1+z)/(z-1)/(z**2+z-1); # Simon Plouffe in his 1992 dissertation with another offset
a:= n-> (Matrix([[0,-1,1]]). Matrix([[1,1,0], [1,0,0], [2,0,1]])^n)[1,1]: seq(a(n), n=0..50); # Alois P. Heinz, Jul 24 2008
-
Table[Fibonacci[n+3] -2, {n,0,50}] (* Vladimir Joseph Stephan Orlovsky, Nov 19 2010 *)
LinearRecurrence[{2,0,-1}, {0,1,3}, 40] (* Harvey P. Dale, Jun 06 2011 *)
Fibonacci[Range[3,40]]-2 (* Harvey P. Dale, Jun 28 2015 *)
-
a(n)=fibonacci(n+3)-2 \\ Charles R Greathouse IV, Mar 14 2012
-
[fibonacci(n+3)-2 for n in range(60)] # G. C. Greubel, Oct 21 2024
A001924
Apply partial sum operator twice to Fibonacci numbers.
Original entry on oeis.org
0, 1, 3, 7, 14, 26, 46, 79, 133, 221, 364, 596, 972, 1581, 2567, 4163, 6746, 10926, 17690, 28635, 46345, 75001, 121368, 196392, 317784, 514201, 832011, 1346239, 2178278, 3524546, 5702854, 9227431, 14930317, 24157781, 39088132, 63245948, 102334116, 165580101
Offset: 0
a(5) = 26 because there are 31 nonempty subsets of {1,2,3,4,5} but 5 of these have successive elements that differ by 3 or more: {1,4}, {1,5}, {2,5}, {1,2,5}, {1,4,5}. - _Geoffrey Critzer_, Feb 17 2012
From _John M. Campbell_, Feb 10 2013: (Start)
There are a(5) = 26 bit strings with the pattern 00 and without the pattern 011 of length 5+1:
000000, 000001, 000010, 000100, 000101, 001000,
001001, 001010, 010000, 010001, 010010, 010100,
100000, 100001, 100010, 100100, 100101, 101000, 101001,
110000, 110001, 110010, 110100, 111000, 111001, 111100.
(End)
- J. Riordan, Discordant permutations, Scripta Math., 20 (1954), 14-23.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe, Table of n, a(n) for n = 0..500
- Bader AlBdaiwi, On the Number of Cycles in a Graph, arXiv preprint arXiv:1603.01807 [cs.DM], 2016.
- Jean-Luc Baril and Jean-Marcel Pallo, Motzkin subposet and Motzkin geodesics in Tamari lattices, 2013.
- Ning-Ning Cao and Feng-Zhen Zhao, Some Properties of Hyperfibonacci and Hyperlucas Numbers, J. Int. Seq. 13 (2010) # 10.8.8.
- Hung Viet Chu, Various Sequences from Counting Subsets, arXiv:2005.10081 [math.CO], 2020.
- Hung Viet Chu, Partial Sums of the Fibonacci Sequence, arXiv:2106.03659 [math.CO], 2021.
- Ligia Loretta Cristea, Ivica Martinjak, and Igor Urbiha, Hyperfibonacci Sequences and Polytopic Numbers, arXiv:1606.06228 [math.CO], 2016.
- Emrah Kiliç and Pantelimon Stănică, Generating matrices for weighted sums of second order linear recurrences, JIS 12 (2009) 09.2.7.
- Wolfdieter Lang, Problem B-858, Fibonacci Quarterly, 36 (1998), 373-374, Solution, ibid. 37 (1999) 183-184.
- Candice A. Marshall, Construction of Pseudo-Involutions in the Riordan Group, Dissertation, Morgan State University, 2017.
- Igor Pak, Boris Shapiro, Ilya Smirnov, and Ken-ichi Yoshida, Hilbert-Kunz multiplicity of quadrics via the Ehrhart theory, Stockholm Univ. (Sweden, 2025). See p. 6.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- J. Riordan, Discordant permutations, Scripta Math., 20 (1954), 14-23. [Annotated scanned copy]
- Stacey Wagner, Enumerating Alternating Permutations with One Alternating Descent, DePaul Discoveries: Vol. 2: Iss. 1, Article 2.
- Index entries for linear recurrences with constant coefficients, signature (3,-2,-1,1).
Right-hand column 4 of triangle
A011794.
-
List([0..40], n-> Fibonacci(n+4) -n-3); # G. C. Greubel, Jul 08 2019
-
a001924 n = a001924_list !! n
a001924_list = drop 3 $ zipWith (-) (tail a000045_list) [0..]
-- Reinhard Zumkeller, Nov 17 2013
-
[Fibonacci(n+4)-(n+3): n in [0..40]]; // Vincenzo Librandi, Jun 23 2016
-
A001924:=-1/(z**2+z-1)/(z-1)**2; # Conjectured by Simon Plouffe in his 1992 dissertation.
##
a:= n-> (<<0|1|0|0>, <0|0|1|0>, <0|0|0|1>, <1|-1|-2|3>>^n.
<<0, 1, 3, 7>>)[1, 1]:
seq(a(n), n=0..40); # Alois P. Heinz, Oct 05 2012
-
a[n_]:= Fibonacci[n+4] -3-n; Array[a, 40, 0] (* Robert G. Wilson v *)
LinearRecurrence[{3,-2,-1,1},{0,1,3,7},40] (* Harvey P. Dale, Jan 24 2015 *)
Nest[Accumulate,Fibonacci[Range[0,40]],2] (* Harvey P. Dale, Jun 15 2016 *)
-
a(n)=fibonacci(n+4)-n-3 \\ Charles R Greathouse IV, Feb 24 2011
-
[fibonacci(n+4) -n-3 for n in (0..40)] # G. C. Greubel, Jul 08 2019
A001891
Hit polynomials; convolution of natural numbers with Fibonacci numbers F(2), F(3), F(4), ....
Original entry on oeis.org
0, 1, 4, 10, 21, 40, 72, 125, 212, 354, 585, 960, 1568, 2553, 4148, 6730, 10909, 17672, 28616, 46325, 74980, 121346, 196369, 317760, 514176, 831985, 1346212, 2178250, 3524517, 5702824, 9227400, 14930285, 24157748, 39088098, 63245913, 102334080, 165580064
Offset: 0
- J. Riordan, The enumeration of permutations with three-ply staircase restrictions, unpublished memorandum, Bell Telephone Laboratories, Murray Hill, NJ, Oct 1963. (See A001883)
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- N. J. A. Sloane, Annotated copy of Riordan's Three-Ply Staircase paper (unpublished memorandum, Bell Telephone Laboratories, Murray Hill, NJ, Oct 1963)
- Index entries for linear recurrences with constant coefficients, signature (3,-2,-1,1).
Right-hand column 5 of triangle
A011794.
-
List([0..40], n-> Fibonacci(n+5) -2*n-5); # G. C. Greubel, Jul 06 2019
-
[Fibonacci(n+5)-(5+2*n): n in [0..40]]; // Vincenzo Librandi, Jun 07 2013
-
LinearRecurrence[{3,-2,-1,1}, {0,1,4,10}, 40] (* Vladimir Joseph Stephan Orlovsky, Feb 16 2012 *)
Table[Fibonacci[n+5] -(2*n+5), {n,0,40}] (* G. C. Greubel, Jul 06 2019 *)
maxDiff = 2;
Map[Length[Select[Map[{#, Max[Differences[#]]} &,
Drop[Subsets[Range[#]], # + 1]], #[[2]] <= maxDiff &]] &,
Range[16]] (* Peter J. C. Moses, Aug 14 2022 *)
-
a(n)=([0,1,0,0; 0,0,1,0; 0,0,0,1; 1,-1,-2,3]^n*[0;1;4;10])[1,1] \\ Charles R Greathouse IV, Apr 08 2016
-
[fibonacci(n+5) -2*n-5 for n in (0..40)] # G. C. Greubel, Jul 06 2019
A014166
Apply partial sum operator 4 times to Fibonacci numbers.
Original entry on oeis.org
0, 1, 5, 16, 41, 92, 189, 365, 674, 1204, 2098, 3588, 6050, 10093, 16703, 27476, 44995, 73440, 119575, 194345, 315460, 511576, 829060, 1342936, 2174596, 3520457, 5698329, 9222440, 14924829, 24151764, 39081553
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Hung Viet Chu, Partial Sums of the Fibonacci Sequence, arXiv:2106.03659 [math.CO], 2021.
- Ligia Loretta Cristea, Ivica Martinjak, and Igor Urbiha, Hyperfibonacci Sequences and Polytopic Numbers, arXiv:1606.06228 [math.CO], 2016.
- Index entries for linear recurrences with constant coefficients, signature (5,-9,6,1,-3,1).
Right-hand column 8 of triangle
A011794.
-
List([0..30], n-> Fibonacci(n+8)-(n^3+12*n^2+59*n+126)/6); # G. C. Greubel, Sep 06 2019
-
[Fibonacci(n+8)-(n^3+12*n^2+59*n+126)/6: n in [0..30]]; // G. C. Greubel, Sep 06 2019
-
with(combinat); seq(fibonacci(n+8)-(n^3+12*n^2+59*n+126)/6, n = 0..30); # G. C. Greubel, Sep 06 2019
-
Nest[Accumulate, Fibonacci[Range[0, 30]], 4] (* Jean-François Alcover, Jan 08 2019 *)
-
a(n)=fibonacci(n+8)-(n^3+12*n^2+59*n+126)/6 \\ Charles R Greathouse IV, Jun 11 2015
-
[fibonacci(n+8)-(n^3+12*n^2+59*n+126)/6 for n in (0..30)] # G. C. Greubel, Sep 06 2019
A014162
Apply partial sum operator thrice to Fibonacci numbers.
Original entry on oeis.org
0, 1, 4, 11, 25, 51, 97, 176, 309, 530, 894, 1490, 2462, 4043, 6610, 10773, 17519, 28445, 46135, 74770, 121115, 196116, 317484, 513876, 831660, 1345861, 2177872, 3524111, 5702389, 9226935, 14929789
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Hung Viet Chu, Partial Sums of the Fibonacci Sequence, arXiv:2106.03659 [math.CO], 2021.
- Ligia Loretta Cristea, Ivica Martinjak, and Igor Urbiha, Hyperfibonacci Sequences and Polytopic Numbers, arXiv:1606.06228 [math.CO], 2016.
- E. S. Egge and T. Mansour, 132-avoiding Two-stack Sortable Permutations, Fibonacci Numbers, and Pell Numbers, arXiv:math/0205206 [math.CO], 2002.
- T. Langley, J. Liese, and J. Remmel, Generating Functions for Wilf Equivalence Under Generalized Factor Order, J. Int. Seq. 14 (2011) # 11.4.2.
- Index entries for linear recurrences with constant coefficients, signature (4,-5,1,2,-1).
Right-hand column 6 of triangle
A011794.
-
List([0..40], n-> Fibonacci(n+6) - (n^2 + 7*n + 16)/2); # G. C. Greubel, Sep 05 2019
-
[Fibonacci(n+6) - (n^2 + 7*n + 16)/2: n in [0..40]]; // G. C. Greubel, Sep 05 2019
-
with(combinat); seq(fibonacci(n+6)-(n^2+7*n+16)*(1/2), n = 0..40); # G. C. Greubel, Sep 05 2019
-
Nest[Accumulate,Fibonacci[Range[0,30]],3] (* or *) LinearRecurrence[{4,-5,1,2,-1},{0,1,4,11,25},40] (* Harvey P. Dale, Aug 19 2017 *)
-
a(n)=fibonacci(n+6)-n*(n+7)/2-8 \\ Charles R Greathouse IV, Jun 11 2015
-
[fibonacci(n+6) - (n^2 + 7*n + 16)/2 for n in (0..40)] # G. C. Greubel, Sep 05 2019
Original entry on oeis.org
1, 5, 15, 36, 76, 148, 273, 485, 839, 1424, 2384, 3952, 6505, 10653, 17383, 28292, 45964, 74580, 120905, 195885, 317231, 513600, 831360, 1345536, 2177521, 3523733, 5701983, 9226500, 14929324, 24156724, 39087009, 63244757, 102332855, 165578768, 267912848
Offset: 0
- A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- J. Freixas and S. Kurz, The golden number and Fibonacci sequences in the design of voting structures, 2012. - From _N. J. A. Sloane_, Dec 29 2012
- W. Lang, Problem B-858, Fibonacci Quarterly, 36,3 (1998) 373-374; Solution, ibid. 37,2 (1999) 183-184.
- Index entries for linear recurrences with constant coefficients, signature (4,-5,1,2,-1).
Right-hand column 7 of triangle
A011794.
-
List([0..40], n-> Fibonacci(n+8) - (n^2 +8*n+20)); # G. C. Greubel, Jul 06 2019
-
[Fibonacci(n+8) - (n^2+8*n+20): n in [0..40]]; // G. C. Greubel, Jul 06 2019
-
Table[Fibonacci[n+8] -(n^2 +8*n+20), {n,0,40}] (* G. C. Greubel, Jul 06 2019 *)
LinearRecurrence[{4,-5,1,2,-1},{1,5,15,36,76},40] (* Harvey P. Dale, Apr 14 2022 *)
-
vector(40, n, n--; fibonacci(n+8) - (n^2 +8*n+20)) \\ G. C. Greubel, Jul 06 2019
-
[fibonacci(n+8) - (n^2 +8*n+20) for n in (0..20)] # G. C. Greubel, Jul 06 2019
Original entry on oeis.org
1, 7, 29, 92, 247, 591, 1300, 2683, 5270, 9955, 18228, 32551, 56967, 98086, 166681, 280271, 467301, 773906, 1274856, 2091266, 3419252, 5576298, 9076280, 14750858, 23945893, 38839257, 62955061, 101995694
Offset: 0
- A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 189, 194-196.
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (7,-20,29,-20,1,8,-5,1).
Right-hand column 12 of triangle
A011794.
-
[(&+[Binomial(n+6-j, n-2*j): j in [0..Floor(n/2)]]): n in [0..30]]; // G. C. Greubel, May 24 2018
-
Table[Sum[Binomial[n+6-j, n-2*j], {j, 0, Floor[n/2]}], {n, 0, 50}] (* G. C. Greubel, May 24 2018 *)
-
for(n=0, 30, print1(sum(j=0, floor(n/2), binomial(n+6-j, n-2*j)), ", ")) \\ G. C. Greubel, May 24 2018
Original entry on oeis.org
1, 6, 22, 63, 155, 344, 709, 1383, 2587, 4685, 8273, 14323, 24416, 41119, 68595, 113590, 187030, 306605, 500950, 816410, 1327986, 2157046, 3499982, 5674578, 9195035, 14893364, 24115804, 39040633, 63192397, 102273950, 165512723, 267839033, 433410661, 701315739, 1134800215
Offset: 0
- A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Hung Viet Chu, Partial Sums of the Fibonacci Sequence, arXiv:2106.03659 [math.CO], 2021.
- Index entries for linear recurrences with constant coefficients, signature (6,-14,15,-5,-4,4,-1).
Right-hand column 10 of triangle
A011794.
-
List([0..35], n-> Fibonacci(n+11)-(n^4+22*n^3+203*n^2+974*n + 2112)/24); # G. C. Greubel, Sep 06 2019
-
[Fibonacci(n+11) - (n^4+22*n^3+203*n^2+974*n+2112)/24: n in [0..35]]; // G. C. Greubel, Sep 06 2019
-
with(combinat); seq(fibonacci(n+11)-(n^4 + 22*n^3 + 203*n^2 + 974*n + 2112)/4!, n = 0..35); # G. C. Greubel, Sep 06 2019
-
Table[Fibonacci[n+11] -(n^4+22*n^3+203*n^2+974*n+2112)/4!, {n,0,35}] (* G. C. Greubel, Sep 06 2019 *)
-
vector(35, n, m=n-1; fibonacci(n+10) - (m^4+22*m^3+203*m^2+974*m +2112)/4!) \\ G. C. Greubel, Sep 06 2019
-
[fibonacci(n+11) - (n^4+22*n^3+203*n^2+974*n+2112)/24 for n in (0..35)] # G. C. Greubel, Sep 06 2019
Original entry on oeis.org
1, 8, 37, 129, 376, 967, 2267, 4950, 10220, 20175, 38403, 70954, 127921, 226007, 392688, 672959, 1140260, 1914166, 3189022, 5280288, 8699540, 14275838, 23352118, 38102976, 62048869, 100888126, 163843187, 265838881, 431026972, 698489013, 1131463777, 1832277574, 2966502032, 4802042229
Offset: 0
- A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 189, 194-196.
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (8,-27,49,-49,21,7,-13,6,-1).
Right-hand column 14 of triangle
A011794.
-
[(&+[Binomial(n+7-j, n-2*j): j in [0..Floor(n/2)]]): n in [0..30]]; // G. C. Greubel, May 24 2018
-
Table[Sum[Binomial[n+7-j, n-2*j], {j, 0, Floor[n/2]}], {n, 0, 50}] (* G. C. Greubel, May 24 2018 *)
-
for(n=0, 30, print1(sum(j=0, floor(n/2), binomial(n+7-j, n-2*j)), ", ")) \\ G. C. Greubel, May 24 2018
Showing 1-10 of 14 results.
Comments