A053808 Partial sums of A001891.
1, 5, 15, 36, 76, 148, 273, 485, 839, 1424, 2384, 3952, 6505, 10653, 17383, 28292, 45964, 74580, 120905, 195885, 317231, 513600, 831360, 1345536, 2177521, 3523733, 5701983, 9226500, 14929324, 24156724, 39087009, 63244757, 102332855, 165578768, 267912848
Offset: 0
References
- A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- J. Freixas and S. Kurz, The golden number and Fibonacci sequences in the design of voting structures, 2012. - From _N. J. A. Sloane_, Dec 29 2012
- W. Lang, Problem B-858, Fibonacci Quarterly, 36,3 (1998) 373-374; Solution, ibid. 37,2 (1999) 183-184.
- Index entries for linear recurrences with constant coefficients, signature (4,-5,1,2,-1).
Crossrefs
Right-hand column 7 of triangle A011794.
Programs
-
GAP
List([0..40], n-> Fibonacci(n+8) - (n^2 +8*n+20)); # G. C. Greubel, Jul 06 2019
-
Magma
[Fibonacci(n+8) - (n^2+8*n+20): n in [0..40]]; // G. C. Greubel, Jul 06 2019
-
Mathematica
Table[Fibonacci[n+8] -(n^2 +8*n+20), {n,0,40}] (* G. C. Greubel, Jul 06 2019 *) LinearRecurrence[{4,-5,1,2,-1},{1,5,15,36,76},40] (* Harvey P. Dale, Apr 14 2022 *)
-
PARI
vector(40, n, n--; fibonacci(n+8) - (n^2 +8*n+20)) \\ G. C. Greubel, Jul 06 2019
-
Sage
[fibonacci(n+8) - (n^2 +8*n+20) for n in (0..20)] # G. C. Greubel, Jul 06 2019
Formula
a(n) = a(n-1) + a(n-2) + (n+1)^2, a(-n)=0.
G.f.: (1+x)/((1-x-x^2)*(1-x)^3).
a(n) = Fibonacci(n+6) - (n^2 + 4*n + 8), n >= 2 (see p. 184 of FQ reference).
a(n-2) = Sum_{i=0..n} Fibonacci(i)*(n-i)^2. - Benoit Cloitre, Mar 06 2004
Comments