cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A006355 Number of binary vectors of length n containing no singletons.

Original entry on oeis.org

1, 0, 2, 2, 4, 6, 10, 16, 26, 42, 68, 110, 178, 288, 466, 754, 1220, 1974, 3194, 5168, 8362, 13530, 21892, 35422, 57314, 92736, 150050, 242786, 392836, 635622, 1028458, 1664080, 2692538, 4356618, 7049156, 11405774, 18454930, 29860704, 48315634
Offset: 0

Views

Author

David M. Bloom

Keywords

Comments

Number of cvtemplates at n-2 letters given <= 2 consecutive consonants or vowels (n >= 4).
Number of (n,2) Freiman-Wyner sequences.
Diagonal sums of the Riordan array ((1-x+x^2)/(1-x), x/(1-x)), A072405 (where this begins 1,0,1,1,1,1,...). - Paul Barry, May 04 2005
Central terms of the triangle in A094570. - Reinhard Zumkeller, Mar 22 2011
Pisano period lengths: 1, 1, 8, 3, 20, 8, 16, 6, 24, 20, 10, 24, 28, 16, 40, 12, 36, 24, 18, 60, ... . - R. J. Mathar, Aug 10 2012
Also the number of matchings in the (n-2)-pan graph for n >= 5. - Eric W. Weisstein, Oct 03 2017
a(n) is the number of bimultus bitstrings of length n. A bitstring is bimultus if each of its 1's possess at least one neighboring 1 and each of its 0's possess at least one neighboring 0. - Steven Finch, May 26 2020

Examples

			a(6)=10 because we have: 000000, 000011, 000111, 001100, 001111, 110000, 110011, 111000, 111100, 111111. - _Geoffrey Critzer_, Jan 26 2014
		

References

  • A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, id. 16, 51.

Crossrefs

Except for initial term, = 2*Fibonacci numbers (A000045).
Essentially the same as A047992, A054886, A055389, A068922, and A090991.
Column 2 in A265584.

Programs

  • Haskell
    a006355 n = a006355_list !! n
    a006355_list = 1 : fib2s where
       fib2s = 0 : map (+ 1) (scanl (+) 1 fib2s)
    -- Reinhard Zumkeller, Mar 20 2013
    
  • Magma
    [1] cat [Lucas(n) - Fibonacci(n): n in [1..50]]; // Vincenzo Librandi, Aug 02 2014
    
  • Maple
    a:= n-> if n=0 then 1 else (Matrix([[2,-2]]). Matrix([[1,1], [1,0]])^n) [1,1] fi: seq(a(n), n=0..38); # Alois P. Heinz, Aug 18 2008
    a := n -> ifelse(n=0, 1, -2*I^n*ChebyshevU(n-2, -I/2)):
    seq(simplify(a(n)), n = 0..38);  # Peter Luschny, Dec 03 2023
  • Mathematica
    Join[{1}, Last[#] - First[#] & /@ Partition[Fibonacci[Range[-1, 40]], 4, 1]] (* Harvey P. Dale, Sep 30 2011 *)
    Join[{1}, LinearRecurrence[{1, 1}, {0, 2}, 38]] (* Jean-François Alcover, Sep 23 2017 *)
    (* Programs from Eric W. Weisstein, Oct 03 2017 *)
    Join[{1}, Table[2 Fibonacci[n], {n, 0, 40}]]
    Join[{1}, 2 Fibonacci[Range[0, 40]]]
    CoefficientList[Series[(1-x+x^2)/(1-x-x^2), {x, 0, 40}], x] (* End *)
  • PARI
    a(n)=if(n,2*fibonacci(n-1),1) \\ Charles R Greathouse IV, Mar 14 2012
    
  • PARI
    my(x='x+O('x^50)); Vec((1-x+x^2)/(1-x-x^2)) \\ Altug Alkan, Nov 01 2015
    
  • SageMath
    def A006355(n): return 2*fibonacci(n-1) - int(n==0)
    print([A006355(n) for n in range(51)]) # G. C. Greubel, Apr 18 2025

Formula

a(n+2) = F(n-1) + F(n+2), for n > 0.
G.f.: (1-x+x^2)/(1-x-x^2). - Paul Barry, May 04 2005
a(n) = A119457(n-1,n-2) for n > 2. - Reinhard Zumkeller, May 20 2006
a(n) = 2*F(n-1) for n > 0, F(n)=A000045(n) and a(0)=1. - Mircea Merca, Jun 28 2012
G.f.: 1 - x + x*Q(0), where Q(k) = 1 + x^2 + (2*k+3)*x - x*(2*k+1 + x)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Oct 05 2013
a(n) = A118658(n) - 0^n. - M. F. Hasler, Nov 05 2014
a(n) = 2^(-n)*((1+r)*(1-r)^n - (1-r)*(1+r)^n)/r for n > 0, where r=sqrt(5). - Colin Barker, Jan 28 2017
a(n) = a(n-1) + a(n-2) for n >= 3. - Armend Shabani, Nov 25 2020
E.g.f.: 2*exp(x/2)*(5*cosh(sqrt(5)*x/2) - sqrt(5)*sinh(sqrt(5)*x/2))/5 - 1. - Stefano Spezia, Apr 18 2022
a(n) = F(n-3) + F(n-2) + F(n-1) for n >= 3, where F(n)=A000045(n). - Gergely Földvári, Aug 03 2024

Extensions

Corrected by T. D. Noe, Oct 31 2006

A001891 Hit polynomials; convolution of natural numbers with Fibonacci numbers F(2), F(3), F(4), ....

Original entry on oeis.org

0, 1, 4, 10, 21, 40, 72, 125, 212, 354, 585, 960, 1568, 2553, 4148, 6730, 10909, 17672, 28616, 46325, 74980, 121346, 196369, 317760, 514176, 831985, 1346212, 2178250, 3524517, 5702824, 9227400, 14930285, 24157748, 39088098, 63245913, 102334080, 165580064
Offset: 0

Views

Author

Keywords

Comments

a(n) is the sum of the n-th row of the triangle in A119457 for n > 0. - Reinhard Zumkeller, May 20 2006
Convolution of odds (A005408) with Fibonacci numbers (A000045). - Graeme McRae, Jun 06 2006
Equals row sums of triangle A152203. - Gary W. Adamson, Nov 29 2008
Define a triangle by T(n,0) = n*(n+1)+1, T(n,n) = 1, and T(r,c) = T(r-1,c) + T(r-2,c-1). This triangle starts: 1; 3,1; 7,2,1; 13,5,2,1; 21,12,4,2,1; the sum of terms in row n is a(n+1). - J. M. Bergot, Apr 23 2013
a(n) = number of k-tuples (u(1), u(2), ..., u(k)) with 1 <= u(1) < u(2) < ... < u(k) <= n such that u(i) - u(i-1) <= 2 for i = 2,...,k. Changing the bound from 2 to 3, then 4, then 5, yields A356619, A356620, A356621. The patterns suggest that the limiting sequence as the bound increases is A000295. - Clark Kimberling, Aug 24 2022

References

  • J. Riordan, The enumeration of permutations with three-ply staircase restrictions, unpublished memorandum, Bell Telephone Laboratories, Murray Hill, NJ, Oct 1963. (See A001883)
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Partial sums of A001911.
A diagonal of triangle in A080061.
Right-hand column 5 of triangle A011794.

Programs

  • GAP
    List([0..40], n-> Fibonacci(n+5) -2*n-5); # G. C. Greubel, Jul 06 2019
  • Magma
    [Fibonacci(n+5)-(5+2*n): n in [0..40]]; // Vincenzo Librandi, Jun 07 2013
    
  • Mathematica
    LinearRecurrence[{3,-2,-1,1}, {0,1,4,10}, 40] (* Vladimir Joseph Stephan Orlovsky, Feb 16 2012 *)
    Table[Fibonacci[n+5] -(2*n+5), {n,0,40}] (* G. C. Greubel, Jul 06 2019 *)
    maxDiff = 2;
    Map[Length[Select[Map[{#, Max[Differences[#]]} &,
      Drop[Subsets[Range[#]], # + 1]], #[[2]] <= maxDiff &]] &,
      Range[16]] (* Peter J. C. Moses, Aug 14 2022 *)
  • PARI
    a(n)=([0,1,0,0; 0,0,1,0; 0,0,0,1; 1,-1,-2,3]^n*[0;1;4;10])[1,1] \\ Charles R Greathouse IV, Apr 08 2016
    
  • Sage
    [fibonacci(n+5) -2*n-5 for n in (0..40)] # G. C. Greubel, Jul 06 2019
    

Formula

G.f.: x*(1+x)/((1-x-x^2)*(1-x)^2). - Simon Plouffe in his 1992 dissertation
a(n) = Fibonacci(n+5) - (5+2*n). - Wolfdieter Lang
a(n) = a(n-1) + a(n-2) + (2n+1); a(-x)=0. - Barry E. Williams, Mar 27 2000
a(n) = 3*a(n-1) - 2*a(n-2) - a(n-3) + a(n-4). - Sam Lachterman (slachterman(AT)fuse.net), Sep 22 2003
a(n) - a(n-1) = A101220(2,1,n). - Ross La Haye, May 31 2006
a(n) = (-3 + (2^(-1-n)*((1-sqrt(5))^n*(-11+5*sqrt(5)) + (1+sqrt(5))^n*(11+5*sqrt(5)))) / sqrt(5) - 2*(1+n)). - Colin Barker, Mar 11 2017

A022086 Fibonacci sequence beginning 0, 3.

Original entry on oeis.org

0, 3, 3, 6, 9, 15, 24, 39, 63, 102, 165, 267, 432, 699, 1131, 1830, 2961, 4791, 7752, 12543, 20295, 32838, 53133, 85971, 139104, 225075, 364179, 589254, 953433, 1542687, 2496120, 4038807, 6534927, 10573734, 17108661, 27682395, 44791056, 72473451, 117264507
Offset: 0

Views

Author

Keywords

Comments

First differences of A111314. - Ross La Haye, May 31 2006
Pisano period lengths: 1, 3, 1, 6, 20, 3, 16, 12, 8, 60, 10, 6, 28, 48, 20, 24, 36, 24, 18, 60, ... . - R. J. Mathar, Aug 10 2012
For n>=6, a(n) is the number of edge covers of the union of two cycles C_r and C_s, r+s=n, with a single common vertex. - Feryal Alayont, Oct 17 2024

References

  • A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, id. 7,17.

Crossrefs

Essentially the same as A097135.
Sequences of the form Fibonacci(n+k) + Fibonacci(n-k) are listed in A280154.
Sequences of the form m*Fibonacci: A000045 (m=1), A006355 (m=2), this sequence (m=3), A022087 (m=4), A022088 (m=5), A022089 (m=6), A022090 (m=7), A022091 (m=8), A022092 (m=8), A022093 (m=10), A022345...A022366 (m=11...32).

Programs

  • Magma
    [3*Fibonacci(n): n in [0..40]]; // Vincenzo Librandi, Dec 31 2016
    
  • Maple
    BB := n->if n=0 then 3; > elif n=1 then 0; > else BB(n-2)+BB(n-1); > fi: > L:=[]: for k from 1 to 34 do L:=[op(L),BB(k)]: od: L; # Zerinvary Lajos, Mar 19 2007
    with (combinat):seq(sum((fibonacci(n,1)),m=1..3),n=0..32); # Zerinvary Lajos, Jun 19 2008
  • Mathematica
    LinearRecurrence[{1, 1}, {0, 3}, 40] (* Arkadiusz Wesolowski, Aug 17 2012 *)
    Table[Fibonacci[n + 4] + Fibonacci[n - 4] - 4 Fibonacci[n], {n, 0, 40}] (* Bruno Berselli, Dec 30 2016 *)
    Table[3 Fibonacci[n], {n, 0, 40}] (* Vincenzo Librandi, Dec 31 2016 *)
  • PARI
    a(n)=3*fibonacci(n) \\ Charles R Greathouse IV, Nov 06 2014
    
  • SageMath
    def A022086(n): return 3*fibonacci(n)
    print([A022086(n) for n in range(41)]) # G. C. Greubel, Apr 10 2025

Formula

a(n) = 3*Fibonacci(n).
a(n) = F(n-2) + F(n+2) for n>1, with F=A000045.
a(n) = round( ((6*phi-3)/5) * phi^n ) for n>2. - Thomas Baruchel, Sep 08 2004
a(n) = A119457(n+1,n-1) for n>1. - Reinhard Zumkeller, May 20 2006
G.f.: 3*x/(1-x-x^2). - Philippe Deléham, Nov 19 2008
a(n) = A187893(n) - 1. - Filip Zaludek, Oct 29 2016
E.g.f.: 6*sinh(sqrt(5)*x/2)*exp(x/2)/sqrt(5). - Ilya Gutkovskiy, Oct 29 2016
a(n) = F(n+4) + F(n-4) - 4*F(n), F = A000045. - Bruno Berselli, Dec 29 2016

A023607 a(n) = n * Fibonacci(n+1).

Original entry on oeis.org

0, 1, 4, 9, 20, 40, 78, 147, 272, 495, 890, 1584, 2796, 4901, 8540, 14805, 25552, 43928, 75258, 128535, 218920, 371931, 630454, 1066464, 1800600, 3034825, 5106868, 8580897, 14398412, 24129160, 40388070, 67527579, 112786496, 188195271
Offset: 0

Views

Author

Keywords

Comments

Convolution of Fibonacci numbers and Lucas numbers.
Central terms of the triangle in A119457 for n>0. - Reinhard Zumkeller, May 20 2006
d/dx(1 + x + 2x^2 + 3x^3 + 5x^4 + 8x^5 + ...) = (1 + 4x + 9x^2 + ...). - Gary W. Adamson, Jun 27 2009
For n > 0: sums of rows of the triangle in A108035. - Reinhard Zumkeller, Oct 08 2012

Crossrefs

First differences of A094584.
Second column of triangle A016095.

Programs

  • Haskell
    a023607 n = a023607_list !! n
    a023607_list = zipWith (*) [0..] $ tail a000045_list
    -- Reinhard Zumkeller, Oct 08 2012
    
  • Maple
    A023607 := proc(n)
        n*combinat[fibonacci](n+1) ;
    end proc:
    seq(A023607(n),n=0..10) ; # R. J. Mathar, Jul 15 2017
  • Mathematica
    Times@@@Thread[{Range[0, 50], Fibonacci[Range[51]]}]  (* Harvey P. Dale, Mar 08 2011 *)
    Table[n*Fibonacci[n + 1], {n, 0, 50}]
  • PARI
    a(n)=n*fibonacci(n+1) \\ Charles R Greathouse IV, Sep 24 2015

Formula

O.g.f.: x(2x+1)/(1-x-x^2)^2. - Len Smiley, Dec 11 2001
a(n) = n*Sum_{k=0..n} binomial(k,n-k). - Paul Barry, Sep 25 2004
a(n) = A215082(2n-2) + A215082(2n-1). - Philippe Deléham, Aug 03 2012
a(n) = Sum_{i=1..n} A000045(i)*A000032(n-i+1). - Vladimir Kruchinin, Nov 08 2013

Extensions

Simpler description from Samuel Lachterman (slachterman(AT)fuse.net), Sep 19 2003
Name improved by T. D. Noe, Mar 08 2011

A022087 Fibonacci sequence beginning 0, 4.

Original entry on oeis.org

0, 4, 4, 8, 12, 20, 32, 52, 84, 136, 220, 356, 576, 932, 1508, 2440, 3948, 6388, 10336, 16724, 27060, 43784, 70844, 114628, 185472, 300100, 485572, 785672, 1271244, 2056916, 3328160, 5385076, 8713236, 14098312, 22811548, 36909860, 59721408, 96631268
Offset: 0

Views

Author

Keywords

Comments

For n > 1, this sequence gives the number of binary strings of length n that do not contain 0000, 0101, 1010, or 1111 as contiguous substrings (see A230127). - Nathaniel Johnston, Oct 11 2013

References

  • A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, id. 18.

Crossrefs

Cf. similar sequences listed in A258160.
Cf. sequences of the form m*Fibonacci listed in A022086.

Programs

Formula

a(n) = 4*F(n) = F(n-2) + F(n) + F(n+2), where F = A000045.
a(n) = round( phi^n*(8*phi-4)/5 ) for n>2. - Thomas Baruchel, Sep 08 2004
a(n) = A119457(n+2,n-1) for n>1. - Reinhard Zumkeller, May 20 2006
G.f.: 4*x/(1-x-x^2). - Philippe Deléham, Nov 19 2008
a(n) = F(n+9) - 17*F(n+3), where F=A000045. - Manuel Valdivia, Dec 15 2009
G.f.: Q(0) -1, where Q(k) = 1 + x^2 + (4*k+5)*x - x*(4*k+1 + x)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Oct 07 2013
a(n) = Fibonacci(n+3) - Fibonacci(n-3), where Fibonacci(-3..-1) = 2,-1,1. - Bruno Berselli, May 22 2015

A022088 Fibonacci sequence beginning 0, 5.

Original entry on oeis.org

0, 5, 5, 10, 15, 25, 40, 65, 105, 170, 275, 445, 720, 1165, 1885, 3050, 4935, 7985, 12920, 20905, 33825, 54730, 88555, 143285, 231840, 375125, 606965, 982090, 1589055, 2571145, 4160200, 6731345, 10891545, 17622890, 28514435, 46137325, 74651760, 120789085
Offset: 0

Views

Author

Keywords

References

  • A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, pp. 15, 34, 52.

Crossrefs

Cf. sequences of the form m*Fibonacci listed in A022086.

Programs

Formula

a(n) = round( (2*phi-1)*phi^n ) for n>3. - Thomas Baruchel, Sep 08 2004
a(n) = 5*Fibonacci(n).
a(n) = A119457(n+3,n-1) for n>1. - Reinhard Zumkeller, May 20 2006
G.f.: 5*x/(1-x-x^2). - Philippe Deléham, Nov 20 2008
a(n+2) = A014217(n+4) - A014217(n). - Paul Curtz, Dec 22 2008
a(n) = sqrt(5*(A000032(n)^2 - 4*(-1)^n)). - Alexander Samokrutov, Sep 02 2015
From Tom Copeland, Jan 25 2016: (Start)
The o.g.f. for the shifted series b(0)=0 and b(n) = a(n+1) is G(x) = 5*x*(1+x)/(1-x*(1+x)) = 5 L(-Cinv(-x)), where L(x) = x/(1-x) with inverse Linv(x) = x/(1+x) and Cinv(x) = x*(1-x), the inverse of the o.g.f. for the shifted Catalan numbers of A000108, C(x) = (1-sqrt(1-4*x))/2. Then Ginv(x) = -C(-Linv(x/5)) = (-1 + sqrt(1+4*x/(5+x)))/2.
a(n+1) = 5*Sum_{k=0..n} binomial(n-k,k) = 5 * A000045(n+1), from A267633, with the convention for zeros of the binomial assumed there. (End)
For n > 0, 1/a(n) = Sum_{k>=1} F(n*k)/(L(n+1)^(k+1)), where F(n) = A000045(n) and L(n) = A000032(n). - Diego Rattaggi, Oct 26 2022

A022089 Fibonacci sequence beginning 0, 6.

Original entry on oeis.org

0, 6, 6, 12, 18, 30, 48, 78, 126, 204, 330, 534, 864, 1398, 2262, 3660, 5922, 9582, 15504, 25086, 40590, 65676, 106266, 171942, 278208, 450150, 728358, 1178508, 1906866, 3085374, 4992240, 8077614, 13069854, 21147468, 34217322, 55364790, 89582112, 144946902
Offset: 0

Views

Author

Keywords

Comments

Starting with a(0)=1, a(1)=3, a(n) = the number of ternary length-2 squarefree words of length n.

References

  • A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, p. 15.

Crossrefs

Sequences of the form m*Fibonacci listed in A022086.

Programs

Formula

a(n) = round( (12*phi-6)/5 * phi^n) for n>3. - Thomas Baruchel, Sep 08 2004
a(n) = 6*F(n) = F(n+3) + F(n+1) + F(n-4), n>3, where F=A000045.
a(n) = A119457(n+4,n-1) for n>1. - Reinhard Zumkeller, May 20 2006
G.f.: 6*x/(1-x-x^2). - Philippe Deléham, Nov 20 2008
a(n) = 6 * A000045(n). - Alois P. Heinz, Jan 18 2019

A022090 Fibonacci sequence beginning 0, 7.

Original entry on oeis.org

0, 7, 7, 14, 21, 35, 56, 91, 147, 238, 385, 623, 1008, 1631, 2639, 4270, 6909, 11179, 18088, 29267, 47355, 76622, 123977, 200599, 324576, 525175, 849751, 1374926, 2224677, 3599603, 5824280, 9423883, 15248163, 24672046, 39920209, 64592255, 104512464
Offset: 0

Views

Author

Keywords

Comments

The number of heptagons in the n-th ring of the Klein Quartic. - Amiram Eldar, Nov 14 2023

References

  • Arthur T. Benjamin and Jennifer J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A., 2003, p. 15.

Crossrefs

Sequences of the form Fibonacci(n+k) + Fibonacci(n-k) are listed in A280154.
Sequences of the form m*Fibonacci are listed in A022086.

Programs

Formula

a(n) = round(((14*phi-7)/5) * phi^n), for n>3. - Thomas Baruchel, Sep 08 2004
a(n) = 7*Fibonacci(n) = Fibonacci(n+4) + Fibonacci(n-4) for n>3.
a(n) = A119457(n+5, n-1) for n>1. - Reinhard Zumkeller, May 20 2006
G.f.: 7*x/(1-x-x^2). - Philippe Deléham, Nov 20 2008
Showing 1-8 of 8 results.