cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 19 results. Next

A045925 a(n) = n*Fibonacci(n).

Original entry on oeis.org

0, 1, 2, 6, 12, 25, 48, 91, 168, 306, 550, 979, 1728, 3029, 5278, 9150, 15792, 27149, 46512, 79439, 135300, 229866, 389642, 659111, 1112832, 1875625, 3156218, 5303286, 8898708, 14912641, 24961200, 41734339, 69705888, 116311074, 193898158, 322961275, 537492672
Offset: 0

Views

Author

Keywords

Comments

Number of levels in all compositions of n+1 with only 1's and 2's.
Apart from first term: row sums of the triangle in A131410. - Reinhard Zumkeller, Oct 07 2012
Number of permutations of length n>0 avoiding the partially ordered pattern (POP) {1>3} of length 4. That is, number of length n permutations having no subsequences of length 4 in which the first element is larger than the third one. - Sergey Kitaev, Dec 08 2020

References

  • Jean Paul Van Bendegem, The Heterogeneity of Mathematical Research, a chapter in Perspectives on Interrogative Models of Inquiry, Volume 8 of the series Logic, Argumentation & Reasoning pp 73-94, Springer 2015. See Section 2.1.

Crossrefs

Partial sums: A014286. Cf. A000045.

Programs

  • Haskell
    a045925 n = a045925_list !! (n-1)
    a045925_list = zipWith (*) [0..] a000045_list
    -- Reinhard Zumkeller, Oct 01 2012
  • Magma
    [n*Fibonacci(n): n in [0..60]]; // Vincenzo Librandi, Apr 23 2011
    
  • Maple
    a:= n-> n*(<<0|1>, <1|1>>^n)[1,2]:
    seq(a(n), n=0..37);  # Alois P. Heinz, May 07 2021
  • Mathematica
    Table[Fibonacci[n]*n, {n, 0, 33}] (* Zerinvary Lajos, Jul 09 2009 *)
    LinearRecurrence[{2, 1, -2, -1}, {0, 1, 2, 6}, 34] (* or *)
    CoefficientList[ Series[(x + x^3)/(-1 + x + x^2)^2, {x, 0, 35}], x] (* Robert G. Wilson v, Nov 14 2015 *)
  • PARI
    Lucas(n)=fibonacci(n-1)+fibonacci(n+1)
    a(n)=polcoeff(sum(m=1,n,eulerphi(m)*fibonacci(m)*x^m/(1-Lucas(m)*x^m+(-1)^m*x^(2*m)+x*O(x^n))),n) \\ Paul D. Hanna, Jan 12 2012
    
  • PARI
    a(n)=n*fibonacci(n) \\ Charles R Greathouse IV, Jan 12 2012
    
  • PARI
    concat(0, Vec(x*(1+x^2)/(1-x-x^2)^2 + O(x^100))) \\ Altug Alkan, Oct 28 2015
    

Formula

G.f.: x*(1+x^2)/(1-x-x^2)^2.
G.f.: Sum_{n>=1} phi(n)*Fibonacci(n)*x^n/(1 - Lucas(n)*x^n + (-1)^n*x^(2*n)) = Sum_{n>=1} n*Fibonacci(n)*x^n, where phi(n) = A000010(n) and Lucas(n) = A000204(n). - Paul D. Hanna, Jan 12 2012
a(n) = a(n-1) + a(n-2) + L(n-1). - Gary Detlefs, Dec 29 2012
a(n) = F(n+1) + Sum_{k=1..n-2} F(k)*L(n-k), F = A000045 and L = A000032. - Gary Detlefs, Dec 29 2012
a(n) = F(2*n)/Sum_{k=0..floor(n/2)} binomial(n-k,k)/(n-k). - Gary Detlefs, Jan 19 2013
a(n) = A014965(n) * A104714(n). - Michel Marcus, Oct 24 2013
a(n) = 3*A001629(n+1) - A001629(n+2) + A000045(n-1). - Ralf Stephan, Apr 26 2014
a(n) = 2*n*(F(n-2) + floor(F(n-3)/2)) + (n^3 mod 3*n), F = A000045. - Gary Detlefs, Jun 06 2014
E.g.f.: x*(exp(-x/phi)/phi + exp(x*phi)*phi)/sqrt(5), where phi = (1+sqrt(5))/2. - Vladimir Reshetnikov, Oct 28 2015
This is a divisibility sequence and is generated by x^4 - 2*x^3 - x^2 + 2*x + 1. - R. K. Guy, Nov 13 2015
a(n) = L'(n, 1), the first derivative of the n-th Lucas polynomial evaluated at 1. - Andrés Ventas, Nov 12 2021
Sum_{n>=0} a(n)/2^n = 10 (Euler, 1990). - Amiram Eldar, Jan 22 2022

Extensions

Incorrect formula removed by Gary Detlefs, Oct 27 2011

A099920 a(n) = (n+1)*F(n), F(n) = Fibonacci numbers A000045.

Original entry on oeis.org

0, 2, 3, 8, 15, 30, 56, 104, 189, 340, 605, 1068, 1872, 3262, 5655, 9760, 16779, 28746, 49096, 83620, 142065, 240812, 407353, 687768, 1159200, 1950650, 3277611, 5499704, 9216519, 15426870, 25793240, 43080608, 71884197, 119835652
Offset: 0

Views

Author

Paul Barry and Ralf Stephan, Oct 15 2004

Keywords

Comments

A Fibonacci-Lucas convolution.
The number of edges in the Lucas cube L_(n+1) [Klavzar]. - R. J. Mathar, Nov 05 2008
Sums of rows of the triangle in A108037. - Reinhard Zumkeller, Oct 07 2012
a(n-1) is the total binary weight of all bimultus bitstrings of length n. A bitstring is bimultus if each of its 1's possess at least one neighboring 1 and each of its 0's possess at least one neighboring 0. - Steven Finch, May 26 2020

References

  • A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, id. 35.

Crossrefs

Equals A010049(n) + A001629(n+1).

Programs

  • Haskell
    a099920 n = a099920_list !! n
    a099920_list = zipWith (*) [1..] a000045_list
    -- Reinhard Zumkeller, Oct 07 2012
    
  • Magma
    [(n+1)*Fibonacci(n): n in [0..60]]; // Vincenzo Librandi, Apr 23 2011
    
  • Mathematica
    Table[(n + 1) Fibonacci[n], {n, 0, 40}] (* Harvey P. Dale, Jan 18 2012 *)
    LinearRecurrence[{2, 1, -2, -1}, {0, 2, 3, 8}, 40] (* Harvey P. Dale, Jan 18 2012 *)
    CoefficientList[Series[(2 - x) x/(-1 + x + x^2)^2, {x, 0, 20}], x] (* Eric W. Weisstein, Jul 28 2023 *)
  • PARI
    a(n)=(n+1)*fibonacci(n) \\ Charles R Greathouse IV, Jun 11 2015

Formula

G.f.: x*(2-x)/(1-x-x^2)^2;
a(n) = Sum_{k=0..n} F(n-k)*(L(k-1) + 0^k).
a(n) = Sum_{k=0..n+1} F(n-k)*binomial(n-k+1, k)*binomial(1, (k+1)/2)*(1-(-1)^k)/2.
a(n) = 2*a(n-1) + a(n-2) - 2*a(n-3) - a(n-4); a(0)=0, a(1)=2, a(2)=3, a(3)=8. - Harvey P. Dale, Jan 18 2012
a(n) = a(n-1) + a(n-2) + A000032(n-1) (Lucas numbers). - Bob Selcoe, Aug 19 2015
a(n) = 2*A001629(n+1) - A001629(n). - R. J. Mathar, Feb 04 2022

Extensions

Entry revised by N. J. A. Sloane, Jan 23 2006. The offset changed, so some of the formulas may now be slightly off.

A093967 a(n) = n * Pell(n).

Original entry on oeis.org

0, 1, 4, 15, 48, 145, 420, 1183, 3264, 8865, 23780, 63151, 166320, 434993, 1130948, 2925375, 7533312, 19323713, 49395780, 125877071, 319888560, 810893265, 2050891876, 5176349663, 13040153280, 32793453025, 82337215012, 206424991215
Offset: 0

Views

Author

Paul Barry, Apr 21 2004

Keywords

Comments

Binomial transform of A093968.

Crossrefs

Programs

  • Magma
    I:=[0,1,4,15]; [n le 4 select I[n] else 4*Self(n-1)-2*Self(n-2)-4*Self(n-3)-Self(n-4): n in [1..40]]; // Vincenzo Librandi, Dec 20 2015
    
  • Maple
    seq(fibonacci(n,2)*n, n=0..27); # Zerinvary Lajos, Apr 05 2008
  • Mathematica
    LinearRecurrence[{4,-2,-4,-1}, {0,1,4,15}, 30] (* Vincenzo Librandi, Dec 20 2015 *)
  • PARI
    { default(realprecision, 100); s=sqrt(2); for (n=0, 100, a=n*round(((1+s)^n-(1-s)^n)/(2*s)); write("b093967.txt", n, " ", a); ) } \\ Harry J. Smith, Jun 17 2009
    
  • Sage
    [n*lucas_number1(n,2,-1) for n in (0..30)] # G. C. Greubel, Dec 28 2021

Formula

G.f.: x*(1+x^2)/(1 - 2*x - x^2)^2;
a(n) = n*((1+sqrt(2))^n - (1-sqrt(2))^n)/(2*sqrt(2));
a(n) = n * A000129(n).

A119457 Triangle read by rows: T(n, 1) = n, T(n, 2) = 2*(n-1) for n>1 and T(n, k) = T(n-1, k-1) + T(n-2, k-2) for 2 < k <= n.

Original entry on oeis.org

1, 2, 2, 3, 4, 3, 4, 6, 6, 5, 5, 8, 9, 10, 8, 6, 10, 12, 15, 16, 13, 7, 12, 15, 20, 24, 26, 21, 8, 14, 18, 25, 32, 39, 42, 34, 9, 16, 21, 30, 40, 52, 63, 68, 55, 10, 18, 24, 35, 48, 65, 84, 102, 110, 89, 11, 20, 27, 40, 56, 78, 105, 136, 165, 178, 144, 12, 22, 30, 45, 64, 91, 126, 170, 220, 267, 288, 233
Offset: 1

Views

Author

Reinhard Zumkeller, May 20 2006

Keywords

Examples

			Triangle begins as:
   1;
   2,  2;
   3,  4,  3;
   4,  6,  6,  5;
   5,  8,  9, 10,  8;
   6, 10, 12, 15, 16, 13;
   7, 12, 15, 20, 24, 26,  21;
   8, 14, 18, 25, 32, 39,  42,  34;
   9, 16, 21, 30, 40, 52,  63,  68,  55;
  10, 18, 24, 35, 48, 65,  84, 102, 110,  89;
  11, 20, 27, 40, 56, 78, 105, 136, 165, 178, 144;
  12, 22, 30, 45, 64, 91, 126, 170, 220, 267, 288, 233;
		

Crossrefs

Main diagonal: A023607(n).
Sums: A001891 (row), A355020 (signed row).
Columns: A000027(n) (k=1), A005843(n-1) (k=2), A008585(n-2) (k=3), A008587(n-3) (k=4), A008590(n-4) (k=5), A008595(n-5) (k=6), A008603(n-6) (k=7).
Diagonals: A000045(n+1) (k=n), A006355(n+1) (k=n-1), A022086(n-1) (k=n-2), A022087(n-2) (k=n-3), A022088(n-3) (k=n-4), A022089(n-4) (k=n-5), A022090(n-5) (k=n-6).

Programs

  • Magma
    A119457:= func< n,k | (n-k+1)*Fibonacci(k+1) >;
    [A119457(n,k): k in [1..n], n in [1..12]]; // G. C. Greubel, Apr 16 2025
    
  • Mathematica
    (* First program *)
    T[n_, 1] := n;
    T[n_ /; n > 1, 2] := 2 n - 2;
    T[n_, k_] /; 2 < k <= n := T[n, k] = T[n - 1, k - 1] + T[n - 2, k - 2];
    Table[T[n, k], {n, 1, 12}, {k, 1, n}] // Flatten (* Jean-François Alcover, Dec 01 2021 *)
    (* Second program *)
    A119457[n_,k_]:= (n-k+1)*Fibonacci[k+1];
    Table[A119457[n,k], {n,13}, {k,n}]//Flatten (* G. C. Greubel, Apr 16 2025 *)
  • SageMath
    def A119457(n,k): return (n-k+1)*fibonacci(k+1)
    print(flatten([[A119457(n,k) for k in range(1,n+1)] for n in range(1,13)])) # G. C. Greubel, Apr 16 2025

Formula

T(n, k) = (n-k+1)*T(k,k) for 1 <= k < n, with T(n, n) = A000045(n+1).
From G. C. Greubel, Apr 15 2025: (Start)
T(n, k) = (n-k+1)*Fibonacci(k+1).
Sum_{k=1..floor((n+1)/2)} T(n-k+1, k) = (1/2)*(1-(-1)^n)*A023652(floor((n+1)/2)) + (1+(-1)^n)*A001891(floor(n/2)).
Sum_{k=1..floor((n+1)/2)} (-1)^(k-1)*T(n-k+1, k) = (1/2)*(1-(-1)^n)*A112469(floor((n-1)/2)) + (1+(-1)^n)*A355020(floor((n-2)/2)). (End)

A016095 Triangular array T(n,k) read by rows, where T(n,k) = coefficient of x^n*y^k in 1/(1-x-y-(x+y)^2).

Original entry on oeis.org

1, 1, 1, 2, 4, 2, 3, 9, 9, 3, 5, 20, 30, 20, 5, 8, 40, 80, 80, 40, 8, 13, 78, 195, 260, 195, 78, 13, 21, 147, 441, 735, 735, 441, 147, 21, 34, 272, 952, 1904, 2380, 1904, 952, 272, 34, 55, 495, 1980, 4620, 6930, 6930, 4620, 1980, 495, 55
Offset: 0

Views

Author

N. J. A. Sloane, Jan 23 2001

Keywords

Comments

Triangle T(n,k), 0<=k<=n, read by rows, given by [1, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...] DELTA [1, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...] where DELTA is the operator defined in A084938. - Philippe Deléham, Aug 10 2005

Examples

			Triangle begins:
  1;
  1,  1;
  2,  4,  2;
  3,  9,  9,  3;
  5, 20, 30, 20,  5;
  8, 40, 80, 80, 40, 8;
  ...
		

Crossrefs

Columns include A000045, A023607. Central diagonal is A102307. Antidiagonal sums are in A063727.

Programs

  • Maple
    read transforms; 1/(1-x-y-(x+y)^2); SERIES2(%,x,y,12); SERIES2TOLIST(%,x,y,12);
  • Mathematica
    T[n_, k_] := SeriesCoefficient[1/(1-x-y-(x+y)^2), {x, 0, n}, {y, 0, k}]; Table[T[n-k, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 04 2017 *)

Formula

G.f.: 1/(1-x-y-(x+y)^2).
T(n,k) = Fibonacci(n+1)*binomial(n,k) = A000045(n+1)*A007318(n,k). - Philippe Deléham, Oct 14 2006
Sum_{k=0..floor(n/2)} T(n-k,k) = A123392(n). - Philippe Deléham, Oct 14 2006
G.f.: T(0)/2, where T(k) = 1 + 1/(1 - (2*k+1+ x*(1+y))*x*(1+y)/((2*k+2+ x*(1+y))*x*(1+y)+ 1/T(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Nov 06 2013
T(n,k) = T(n-1,k)+T(n-1,k-1)+T(n-2,k)+2*T(n-2,k-1)+T(n-2,k-2), T(0,0) = T(1,0) = T(1,1) = 1, T(2,0) = T(2,2) = 2, T(2,1) = 4, T(n,k) = 0 if k<0 or if k>n. - Philippe Deléham, Nov 12 2013

A094584 Dot product of (1,2,...,n) and first n distinct Fibonacci numbers.

Original entry on oeis.org

1, 5, 14, 34, 74, 152, 299, 571, 1066, 1956, 3540, 6336, 11237, 19777, 34582, 60134, 104062, 179320, 307855, 526775, 898706, 1529160, 2595624, 4396224, 7431049, 12537917, 21118814, 35517226, 59646386, 100034456, 167562035, 280348531, 468543802, 782277612
Offset: 1

Views

Author

Clark Kimberling, May 13 2004

Keywords

Comments

a(n) is the cost of all non-leaf nodes in the Fibonacci tree of order n+2. A Fibonacci tree of order n (n>=2) is a complete binary tree whose left subtree is the Fibonacci tree of order n-1 and whose right subtree is the Fibonacci tree of order n-2; each of the Fibonacci trees of order 0 and 1 is defined as a single node. In a Fibonacci tree the cost of a left (right) edge is defined to be 1 (2). The cost of a node of a Fibonacci tree is defined to be the sum of the costs of the edges that form the path from the root to this node. - Emeric Deutsch, Jun 14 2010

Examples

			a(4) = (1,2,3,4)*(1,2,3,5) = 1+4+9+20 = 34.
		

References

  • A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, p. 14.
  • D. E. Knuth, The Art of Computer Programming, Vol. 3, 2nd edition, Addison-Wesley, Reading, MA, 1998, p. 417. [From Emeric Deutsch, Jun 14 2010]

Crossrefs

Partial sums of A023607.

Programs

  • GAP
    List([1..40],n->(n+1)*Fibonacci(n+3)-Fibonacci(n+5)+3); # Muniru A Asiru, Apr 27 2019
    
  • Magma
    I:=[1,5,14,34,74]; [n le 5 select I[n] else 3*Self(n-1)-Self(n-2)-3*Self(n-3)+Self(n-4)+Self(n-5): n in [1..40]]; // Vincenzo Librandi, Mar 11 2015
    
  • Magma
    [n*Fibonacci(n+3)-Fibonacci(n+4)+3: n in [1..40]]; // G. C. Greubel, Apr 28 2019
    
  • Maple
    with(combinat): A094584:=n->(n+1)*fibonacci(n+3)-fibonacci(n+5)+3: seq(A094584(n), n=1..50); # Wesley Ivan Hurt, Mar 10 2015
  • Mathematica
    Table[Range[n].Fibonacci[Range[2,n+1]],{n,40}] (* Harvey P. Dale, Aug 21 2011 *)
  • PARI
    {a(n) = n*fibonacci(n+3) - fibonacci(n+4) +3}; \\ G. C. Greubel, Apr 28 2019
    
  • Sage
    [n*fibonacci(n+3) - fibonacci(n+4) +3 for n in (1..40)] # G. C. Greubel, Apr 28 2019

Formula

a(n) = F(2) + 2*F(3) + 3*F(4) + ... + n*F(n+1) = (n+1)*F(n+3) - F(n+5) + 3.
G.f.: x*(1+2*x)/((1-x)*(1-x-x^2)^2). - Colin Barker, Nov 11 2012
From Wesley Ivan Hurt, Mar 10 2015: (Start)
a(n) = 3*a(n-1) - a(n-2) - 3*a(n-3) + a(n-4) + a(n-5).
a(n) = Sum_{i=1..n+2} (n-i+1) * F(n-i+2).
a(n) = (30*(-1-sqrt(5))^n + (-15+7*sqrt(5))*2^n - (15+7*sqrt(5))*(-3-sqrt(5))^n + 2n*((5-2*sqrt(5))*2^n + (5+2*sqrt(5))*(-3-sqrt(5))^n)) / (10*(-1-sqrt(5))^n). (End)

A108035 Triangle read by rows: n-th row consists of n copies of the n-th nonzero Fibonacci number.

Original entry on oeis.org

1, 2, 2, 3, 3, 3, 5, 5, 5, 5, 8, 8, 8, 8, 8, 13, 13, 13, 13, 13, 13, 21, 21, 21, 21, 21, 21, 21, 34, 34, 34, 34, 34, 34, 34, 34, 55, 55, 55, 55, 55, 55, 55, 55, 55, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 144, 144, 144, 144, 144, 144, 144, 144, 144, 144, 144, 233, 233, 233, 233, 233, 233, 233, 233, 233, 233, 233, 233
Offset: 1

Views

Author

N. J. A. Sloane, Jun 01 2005

Keywords

Examples

			1; 2,2; 3,3,3; 5,5,5,5; 8,8,8,8,8; ...
		

Crossrefs

Cf. A023607 (row sums).

Programs

  • Haskell
    a108035 n k = a108035_tabl !! (n-1) !! (n-1)
    a108035_row n = a108035_tabl !! (n-1)
    a108035_tabl = zipWith replicate [1..] $ drop 2 a000045_list
    -- Reinhard Zumkeller, Oct 07 2012
    
  • Mathematica
    Flatten[Table[Table[Fibonacci[n],{n-1}],{n,13}]] (* Harvey P. Dale, Jul 18 2015 *)
  • Python
    from math import isqrt
    from sympy import fibonacci
    def A108035(n): return int(fibonacci(1+(m:=isqrt(k:=n<<1))+(k>m*(m+1)))) # Chai Wah Wu, Nov 07 2024

Formula

G.f.: (1+x+y)/((1-x-x^2)*(1-y-y^2)). [U coordinates]

Extensions

Definition clarified by N. J. A. Sloane, Nov 09 2024

A178521 The cost of all leaves in the Fibonacci tree of order n.

Original entry on oeis.org

0, 0, 3, 7, 17, 35, 70, 134, 251, 461, 835, 1495, 2652, 4668, 8163, 14195, 24565, 42331, 72674, 124354, 212155, 360985, 612743, 1037807, 1754232, 2959800, 4985475, 8384479, 14080601, 23614931, 39556030, 66181310, 110608187, 184670693, 308030923, 513334855
Offset: 0

Views

Author

Emeric Deutsch, Jun 14 2010

Keywords

Comments

A Fibonacci tree of order n (n>=2) is a complete binary tree whose left subtree is the Fibonacci tree of order n-1 and whose right subtree is the Fibonacci tree of order n-2; each of the Fibonacci trees of order 0 and 1 is defined as a single node. In a Fibonacci tree the cost of a left (right) edge is defined to be 1 (2). The cost of a leaf of a Fibonacci tree is defined to be the sum of the costs of the edges that form the path from the root to this leaf.

References

  • D. E. Knuth, The Art of Computer Programming, Vol. 3, 2nd edition, Addison-Wesley, Reading, MA, 1998, p. 417.

Crossrefs

Programs

  • Julia
    # The function 'fibrec' is defined in A354044.
    function A178521(n)
        n < 2 && return BigInt(0)
        a, b = fibrec(n - 1)
        a*n + (n - 1)*b
    end
    println([A178521(n) for n in 0:35]) # Peter Luschny, May 16 2022
  • Maple
    with(combinat); seq(n*fibonacci(n+1)-fibonacci(n), n = 0 .. 35);
  • Mathematica
    Table[n Fibonacci[n + 1] - Fibonacci[n], {n, 0, 40}]  (* Harvey P. Dale, Apr 21 2011 *)
    Table[(n - 1) Fibonacci[n] + n Fibonacci[n - 1], {n, 0, 40}] (* Bruno Berselli, Dec 06 2013 *)
  • PARI
    concat(vector(2), Vec(x^2*(x+3)/(x^2+x-1)^2 + O(x^50))) \\ Colin Barker, Jul 26 2017
    

Formula

a(n) = n*F(n+1) - F(n), where F(k) = A000045(k).
G.f.: x^2*(x+3)/(x^2+x-1)^2. - Colin Barker, Nov 11 2012
a(n) = Sum_{k=1..n-1} F(k) * L(n-k+1) where F(n) = A000045(n), L(n) = A000032(n). - Gary Detlefs, Dec 29 2012
a(n) = (n-1)*F(n) + n*F(n-1). - Bruno Berselli, Dec 06 2013
a(0) = 0, a(n) = A023607(n-1) + A099920(n-1). - Collin Berman, Dec 12 2016
a(n) = 2*a(n-1) + a(n-2) - 2*a(n-3) - a(n-4). - Wesley Ivan Hurt, Dec 14 2016
a(n) = (n+1)*F(n+1) - F(n+2). - Bruno Berselli, Jul 26 2017
a(n) = (2^(-1-n)*(2*sqrt(5)*((1-sqrt(5))^n - (1+sqrt(5))^n) + (-(1-sqrt(5))^n*(-5+sqrt(5)) + (1+sqrt(5))^n*(5+sqrt(5)))*n))/5. - Colin Barker, Jul 26 2017
a(n) = (-n*sin(c*(-n - 1)) - sin(c*n)*i)/((-i)^(-n)*sqrt(5/4)) where c = arccos(i/2). - Peter Luschny, May 16 2022

A215082 Related to Fibonacci numbers, see the Formula section.

Original entry on oeis.org

0, 1, 1, 3, 4, 5, 8, 12, 17, 23, 35, 43, 66, 81, 124, 148, 229, 266, 414, 476, 742, 842, 1318, 1478, 2320, 2581, 4059, 4481, 7062, 7743, 12224, 13328, 21071, 22857, 36185, 39073, 61930, 66605, 105678, 113242, 179847, 192084, 305326, 325128, 517212, 549252
Offset: 0

Views

Author

Philippe Deléham, Aug 02 2012

Keywords

Examples

			a(2) + a(3) = 2*2 = 4 -> a(3) = 3.
a(4) = a(3) + a(1) = 3 + 1 = 4.
a(4) + a(5) = 3*3 = 9 -> a(5) = 5.
a(6) = a(5) + a(3) = 5 + 3 = 8 , etc.
		

Crossrefs

Programs

  • Maple
    a:= n-> (Matrix(6, (i, j)-> `if`(i=j-1, 1, `if`(i=6, [-1, -3, -2, 1, 2, 1][j], 0)))^iquo(n, 2, 'r'). `if`(r=0, <<0, 1, 4, 8, 17, 35>>, <<1, 3, 5, 12, 23, 43>>))[1, 1]: seq (a(n), n=0..50);  # Alois P. Heinz, Aug 02 2012

Formula

a(0) = 0, a(1) = 1, a(2) = 1, a(2n) + a(2n+1) = (n+1)*Fibonacci(n+2), a(2n) = a(2n-1) + a(2n-3).
G.f.: x*(2*x^2+1)*(x^3+x+1) / ((x^2-x+1)*(x^2+x+1)*(x^4+x^2-1)^2). - Alois P. Heinz, Aug 02 2012

A264147 a(n) = n*F(n+1) - (n+1)*F(n), where F = A000045.

Original entry on oeis.org

0, -1, 1, 1, 5, 10, 22, 43, 83, 155, 285, 516, 924, 1639, 2885, 5045, 8773, 15182, 26162, 44915, 76855, 131119, 223101, 378696, 641400, 1084175, 1829257, 3081193, 5181893, 8702290, 14594830, 24446971, 40902299, 68359619, 114132765, 190373580, 317258388, 528265207
Offset: 0

Views

Author

Bruno Berselli, Nov 04 2015

Keywords

Comments

a(n) is prime for n = 4, 7, 8, 26, 28, 52, 86, 87, 93, 97, 158, 196, 303, 2908, 3412, 4111, 4208, 6183, 6337, 9878, ...

Crossrefs

Cf. A178521: n*F(n+1) + (n+1)*F(n).
Cf. A094588: n*F(n-1) + F(n).
Cf. A099920: Sum_{i=0..n} F(i)*L(n-i).
Cf. A023607: Sum_{i=0..n} F(i)*L(n+1-i).

Programs

  • Julia
    # The function 'fibrec' is defined in A354044.
    function A264147(n)
        n == 0 && return BigInt(0)
        a, b = fibrec(n)
        n*b - a*(n + 1)
    end # Peter Luschny, May 16 2022
  • Magma
    [n*Fibonacci(n+1)-(n+1)*Fibonacci(n): n in [0..40]];
    
  • Maple
    A264147 := proc(n)
        n*combinat[fibonacci](n+1)-(n+1)*combinat[fibonacci](n) ;
    end proc:
    seq(A264147(n),n=0..10) ; # R. J. Mathar, Jun 02 2022
  • Mathematica
    Table[n Fibonacci[n + 1] - (n + 1) Fibonacci[n], {n, 0, 40}]
  • Maxima
    makelist(n*fib(n+1)-(n+1)*fib(n), n, 0, 40);
    
  • PARI
    for(n=0, 40, print1(n*fibonacci(n+1)-(n+1)*fibonacci(n)", "));
    
  • PARI
    concat(0, Vec(-x*(1 - 3*x) / (1 - x - x^2)^2 + O(x^50))) \\ Colin Barker, Jul 27 2017
    
  • Sage
    [n*fibonacci(n+1)-(n+1)*fibonacci(n) for n in (0..40)]
    

Formula

G.f.: x*(-1 + 3*x)/(1 - x - x^2)^2.
a(n) = 2*a(n-1) + a(n-2) - 2*a(n-3) - a(n-4).
a(n) = n*F(n-1) - F(n).
a(n) = Sum_{i=0..n} F(i)*L(n-1-i), where L() is a Lucas number (A000032).
a(n) = 3*A001629(n) - A001629(n+1).
a(n) = -(-1)^n*A178521(-n).
a(n+2) - a(n) = A007502(n+1).
Sum_{i>0} 1/a(i) = 1.39516607051636028893879220294180374...
a(n) = (-((1+sqrt(5))/2)^n*(2*sqrt(5) + (-5+sqrt(5))*n) + ((1-sqrt(5))/2)^n*(2*sqrt(5) + (5+sqrt(5))*n)) / 10. - Colin Barker, Jul 27 2017
a(n) = (-i)^n*(n*sin(c*(n+1)) - (n+1)*sin(c*n)*i)/sqrt(5/4) where c = arccos(i/2). - Peter Luschny, May 16 2022
Showing 1-10 of 19 results. Next