A045925
a(n) = n*Fibonacci(n).
Original entry on oeis.org
0, 1, 2, 6, 12, 25, 48, 91, 168, 306, 550, 979, 1728, 3029, 5278, 9150, 15792, 27149, 46512, 79439, 135300, 229866, 389642, 659111, 1112832, 1875625, 3156218, 5303286, 8898708, 14912641, 24961200, 41734339, 69705888, 116311074, 193898158, 322961275, 537492672
Offset: 0
- Jean Paul Van Bendegem, The Heterogeneity of Mathematical Research, a chapter in Perspectives on Interrogative Models of Inquiry, Volume 8 of the series Logic, Argumentation & Reasoning pp 73-94, Springer 2015. See Section 2.1.
- Reinhard Zumkeller, Table of n, a(n) for n = 0..1000
- Russell Euler, Problem B-670, Elementary Problems and Solutions, The Fibonacci Quarterly, Vol. 28, No. 3 (1990), p. 277; Application of Generating Functions, Solution to Problem B-670 by Russell Jay Hendel, ibid., Vol. 29, No. 3 (1991), p. 278.
- Rigoberto Flórez, Robinson Higuita and Alexander Ramírez, The resultant, the discriminant, and the derivative of generalized Fibonacci polynomials, arXiv:1808.01264 [math.NT], 2018.
- Alice L. L. Gao and Sergey Kitaev, On partially ordered patterns of length 4 and 5 in permutations, arXiv:1903.08946 [math.CO], 2019.
- Alice L. L. Gao and Sergey Kitaev, On partially ordered patterns of length 4 and 5 in permutations, The Electronic Journal of Combinatorics, Vol. 26, No. 3 (2019), Article P3.26.
- Silvia Heubach and Toufik Mansour, Counting rises, levels and drops in compositions, arXiv:math/0310197 [math.CO], 2003.
- A. G. Shannon, B. Kuloğlu, and E. Özkan, Rhaly terraced sequences their generalizations, properties and applications, Comp. Appl. Math. 44, 226 (2025). See p. 2.
- Kai Ting Keshia Yap, David Wehlau and Imed Zaguia, Permutations Avoiding Certain Partially-ordered Patterns, arXiv:2101.12061 [math.CO], 2021.
- Index to divisibility sequences.
- Index entries for linear recurrences with constant coefficients, signature (2,1,-2,-1).
-
a045925 n = a045925_list !! (n-1)
a045925_list = zipWith (*) [0..] a000045_list
-- Reinhard Zumkeller, Oct 01 2012
-
[n*Fibonacci(n): n in [0..60]]; // Vincenzo Librandi, Apr 23 2011
-
a:= n-> n*(<<0|1>, <1|1>>^n)[1,2]:
seq(a(n), n=0..37); # Alois P. Heinz, May 07 2021
-
Table[Fibonacci[n]*n, {n, 0, 33}] (* Zerinvary Lajos, Jul 09 2009 *)
LinearRecurrence[{2, 1, -2, -1}, {0, 1, 2, 6}, 34] (* or *)
CoefficientList[ Series[(x + x^3)/(-1 + x + x^2)^2, {x, 0, 35}], x] (* Robert G. Wilson v, Nov 14 2015 *)
-
Lucas(n)=fibonacci(n-1)+fibonacci(n+1)
a(n)=polcoeff(sum(m=1,n,eulerphi(m)*fibonacci(m)*x^m/(1-Lucas(m)*x^m+(-1)^m*x^(2*m)+x*O(x^n))),n) \\ Paul D. Hanna, Jan 12 2012
-
a(n)=n*fibonacci(n) \\ Charles R Greathouse IV, Jan 12 2012
-
concat(0, Vec(x*(1+x^2)/(1-x-x^2)^2 + O(x^100))) \\ Altug Alkan, Oct 28 2015
A099920
a(n) = (n+1)*F(n), F(n) = Fibonacci numbers A000045.
Original entry on oeis.org
0, 2, 3, 8, 15, 30, 56, 104, 189, 340, 605, 1068, 1872, 3262, 5655, 9760, 16779, 28746, 49096, 83620, 142065, 240812, 407353, 687768, 1159200, 1950650, 3277611, 5499704, 9216519, 15426870, 25793240, 43080608, 71884197, 119835652
Offset: 0
- A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, id. 35.
- Reinhard Zumkeller, Table of n, a(n) for n = 0..1000
- S. Klavzar, On median nature and enumerative properties of Fibonacci-like cubes, Discr. Math. 299 (2005), 145-153.
- Franck Ramaharo, A one-variable bracket polynomial for some Turk's head knots, arXiv:1807.05256 [math.CO], 2018.
- Steven Finch, Variance of longest run duration in a random bitstring, arXiv:2005.12185 [math.CO], 2020.
- Tamás Szakács, Convolution of second order linear recursive sequences. II. Commun. Math. 25, No. 2, 137-148 (2017), remark 2.
- Tamás Szakács, Linear recursive sequences and factorials, Ph. D. Thesis, Univ. Debrecen (Hungary, 2024). See p. 35.
- Eric Weisstein's World of Mathematics, Edge Count.
- Eric Weisstein's World of Mathematics, Lucas Cube Graph.
- Index entries for linear recurrences with constant coefficients, signature (2,1,-2,-1)
-
a099920 n = a099920_list !! n
a099920_list = zipWith (*) [1..] a000045_list
-- Reinhard Zumkeller, Oct 07 2012
-
[(n+1)*Fibonacci(n): n in [0..60]]; // Vincenzo Librandi, Apr 23 2011
-
Table[(n + 1) Fibonacci[n], {n, 0, 40}] (* Harvey P. Dale, Jan 18 2012 *)
LinearRecurrence[{2, 1, -2, -1}, {0, 2, 3, 8}, 40] (* Harvey P. Dale, Jan 18 2012 *)
CoefficientList[Series[(2 - x) x/(-1 + x + x^2)^2, {x, 0, 20}], x] (* Eric W. Weisstein, Jul 28 2023 *)
-
a(n)=(n+1)*fibonacci(n) \\ Charles R Greathouse IV, Jun 11 2015
Entry revised by
N. J. A. Sloane, Jan 23 2006. The offset changed, so some of the formulas may now be slightly off.
A093967
a(n) = n * Pell(n).
Original entry on oeis.org
0, 1, 4, 15, 48, 145, 420, 1183, 3264, 8865, 23780, 63151, 166320, 434993, 1130948, 2925375, 7533312, 19323713, 49395780, 125877071, 319888560, 810893265, 2050891876, 5176349663, 13040153280, 32793453025, 82337215012, 206424991215
Offset: 0
- Harry J. Smith, Table of n, a(n) for n = 0..1000
- Rigoberto Flórez, Robinson Higuita and Alexander Ramírez, The resultant, the discriminant, and the derivative of generalized Fibonacci polynomials, arXiv:1808.01264 [math.NT], 2018.
- Index entries for linear recurrences with constant coefficients, signature (4,-2,-4,-1).
-
I:=[0,1,4,15]; [n le 4 select I[n] else 4*Self(n-1)-2*Self(n-2)-4*Self(n-3)-Self(n-4): n in [1..40]]; // Vincenzo Librandi, Dec 20 2015
-
seq(fibonacci(n,2)*n, n=0..27); # Zerinvary Lajos, Apr 05 2008
-
LinearRecurrence[{4,-2,-4,-1}, {0,1,4,15}, 30] (* Vincenzo Librandi, Dec 20 2015 *)
-
{ default(realprecision, 100); s=sqrt(2); for (n=0, 100, a=n*round(((1+s)^n-(1-s)^n)/(2*s)); write("b093967.txt", n, " ", a); ) } \\ Harry J. Smith, Jun 17 2009
-
[n*lucas_number1(n,2,-1) for n in (0..30)] # G. C. Greubel, Dec 28 2021
A119457
Triangle read by rows: T(n, 1) = n, T(n, 2) = 2*(n-1) for n>1 and T(n, k) = T(n-1, k-1) + T(n-2, k-2) for 2 < k <= n.
Original entry on oeis.org
1, 2, 2, 3, 4, 3, 4, 6, 6, 5, 5, 8, 9, 10, 8, 6, 10, 12, 15, 16, 13, 7, 12, 15, 20, 24, 26, 21, 8, 14, 18, 25, 32, 39, 42, 34, 9, 16, 21, 30, 40, 52, 63, 68, 55, 10, 18, 24, 35, 48, 65, 84, 102, 110, 89, 11, 20, 27, 40, 56, 78, 105, 136, 165, 178, 144, 12, 22, 30, 45, 64, 91, 126, 170, 220, 267, 288, 233
Offset: 1
Triangle begins as:
1;
2, 2;
3, 4, 3;
4, 6, 6, 5;
5, 8, 9, 10, 8;
6, 10, 12, 15, 16, 13;
7, 12, 15, 20, 24, 26, 21;
8, 14, 18, 25, 32, 39, 42, 34;
9, 16, 21, 30, 40, 52, 63, 68, 55;
10, 18, 24, 35, 48, 65, 84, 102, 110, 89;
11, 20, 27, 40, 56, 78, 105, 136, 165, 178, 144;
12, 22, 30, 45, 64, 91, 126, 170, 220, 267, 288, 233;
-
A119457:= func< n,k | (n-k+1)*Fibonacci(k+1) >;
[A119457(n,k): k in [1..n], n in [1..12]]; // G. C. Greubel, Apr 16 2025
-
(* First program *)
T[n_, 1] := n;
T[n_ /; n > 1, 2] := 2 n - 2;
T[n_, k_] /; 2 < k <= n := T[n, k] = T[n - 1, k - 1] + T[n - 2, k - 2];
Table[T[n, k], {n, 1, 12}, {k, 1, n}] // Flatten (* Jean-François Alcover, Dec 01 2021 *)
(* Second program *)
A119457[n_,k_]:= (n-k+1)*Fibonacci[k+1];
Table[A119457[n,k], {n,13}, {k,n}]//Flatten (* G. C. Greubel, Apr 16 2025 *)
-
def A119457(n,k): return (n-k+1)*fibonacci(k+1)
print(flatten([[A119457(n,k) for k in range(1,n+1)] for n in range(1,13)])) # G. C. Greubel, Apr 16 2025
A016095
Triangular array T(n,k) read by rows, where T(n,k) = coefficient of x^n*y^k in 1/(1-x-y-(x+y)^2).
Original entry on oeis.org
1, 1, 1, 2, 4, 2, 3, 9, 9, 3, 5, 20, 30, 20, 5, 8, 40, 80, 80, 40, 8, 13, 78, 195, 260, 195, 78, 13, 21, 147, 441, 735, 735, 441, 147, 21, 34, 272, 952, 1904, 2380, 1904, 952, 272, 34, 55, 495, 1980, 4620, 6930, 6930, 4620, 1980, 495, 55
Offset: 0
Triangle begins:
1;
1, 1;
2, 4, 2;
3, 9, 9, 3;
5, 20, 30, 20, 5;
8, 40, 80, 80, 40, 8;
...
-
read transforms; 1/(1-x-y-(x+y)^2); SERIES2(%,x,y,12); SERIES2TOLIST(%,x,y,12);
-
T[n_, k_] := SeriesCoefficient[1/(1-x-y-(x+y)^2), {x, 0, n}, {y, 0, k}]; Table[T[n-k, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 04 2017 *)
A094584
Dot product of (1,2,...,n) and first n distinct Fibonacci numbers.
Original entry on oeis.org
1, 5, 14, 34, 74, 152, 299, 571, 1066, 1956, 3540, 6336, 11237, 19777, 34582, 60134, 104062, 179320, 307855, 526775, 898706, 1529160, 2595624, 4396224, 7431049, 12537917, 21118814, 35517226, 59646386, 100034456, 167562035, 280348531, 468543802, 782277612
Offset: 1
a(4) = (1,2,3,4)*(1,2,3,5) = 1+4+9+20 = 34.
- A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, p. 14.
- D. E. Knuth, The Art of Computer Programming, Vol. 3, 2nd edition, Addison-Wesley, Reading, MA, 1998, p. 417. [From Emeric Deutsch, Jun 14 2010]
- Muniru A Asiru, Table of n, a(n) for n = 1..2000
- Y. Horibe, An entropy view of Fibonacci trees, Fibonacci Quarterly, 20, No. 2, 1982, 168-178. [From _Emeric Deutsch_, Jun 14 2010]
- Index entries for linear recurrences with constant coefficients, signature (3,-1,-3,1,1).
-
List([1..40],n->(n+1)*Fibonacci(n+3)-Fibonacci(n+5)+3); # Muniru A Asiru, Apr 27 2019
-
I:=[1,5,14,34,74]; [n le 5 select I[n] else 3*Self(n-1)-Self(n-2)-3*Self(n-3)+Self(n-4)+Self(n-5): n in [1..40]]; // Vincenzo Librandi, Mar 11 2015
-
[n*Fibonacci(n+3)-Fibonacci(n+4)+3: n in [1..40]]; // G. C. Greubel, Apr 28 2019
-
with(combinat): A094584:=n->(n+1)*fibonacci(n+3)-fibonacci(n+5)+3: seq(A094584(n), n=1..50); # Wesley Ivan Hurt, Mar 10 2015
-
Table[Range[n].Fibonacci[Range[2,n+1]],{n,40}] (* Harvey P. Dale, Aug 21 2011 *)
-
{a(n) = n*fibonacci(n+3) - fibonacci(n+4) +3}; \\ G. C. Greubel, Apr 28 2019
-
[n*fibonacci(n+3) - fibonacci(n+4) +3 for n in (1..40)] # G. C. Greubel, Apr 28 2019
A108035
Triangle read by rows: n-th row consists of n copies of the n-th nonzero Fibonacci number.
Original entry on oeis.org
1, 2, 2, 3, 3, 3, 5, 5, 5, 5, 8, 8, 8, 8, 8, 13, 13, 13, 13, 13, 13, 21, 21, 21, 21, 21, 21, 21, 34, 34, 34, 34, 34, 34, 34, 34, 55, 55, 55, 55, 55, 55, 55, 55, 55, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 144, 144, 144, 144, 144, 144, 144, 144, 144, 144, 144, 233, 233, 233, 233, 233, 233, 233, 233, 233, 233, 233, 233
Offset: 1
1; 2,2; 3,3,3; 5,5,5,5; 8,8,8,8,8; ...
-
a108035 n k = a108035_tabl !! (n-1) !! (n-1)
a108035_row n = a108035_tabl !! (n-1)
a108035_tabl = zipWith replicate [1..] $ drop 2 a000045_list
-- Reinhard Zumkeller, Oct 07 2012
-
Flatten[Table[Table[Fibonacci[n],{n-1}],{n,13}]] (* Harvey P. Dale, Jul 18 2015 *)
-
from math import isqrt
from sympy import fibonacci
def A108035(n): return int(fibonacci(1+(m:=isqrt(k:=n<<1))+(k>m*(m+1)))) # Chai Wah Wu, Nov 07 2024
A178521
The cost of all leaves in the Fibonacci tree of order n.
Original entry on oeis.org
0, 0, 3, 7, 17, 35, 70, 134, 251, 461, 835, 1495, 2652, 4668, 8163, 14195, 24565, 42331, 72674, 124354, 212155, 360985, 612743, 1037807, 1754232, 2959800, 4985475, 8384479, 14080601, 23614931, 39556030, 66181310, 110608187, 184670693, 308030923, 513334855
Offset: 0
- D. E. Knuth, The Art of Computer Programming, Vol. 3, 2nd edition, Addison-Wesley, Reading, MA, 1998, p. 417.
- Colin Barker, Table of n, a(n) for n = 0..1000
- Y. Horibe, An entropy view of Fibonacci trees, Fibonacci Quarterly, 20, No. 2, 1982, 168-178.
- Index entries for linear recurrences with constant coefficients, signature (2,1,-2,-1).
-
# The function 'fibrec' is defined in A354044.
function A178521(n)
n < 2 && return BigInt(0)
a, b = fibrec(n - 1)
a*n + (n - 1)*b
end
println([A178521(n) for n in 0:35]) # Peter Luschny, May 16 2022
-
with(combinat); seq(n*fibonacci(n+1)-fibonacci(n), n = 0 .. 35);
-
Table[n Fibonacci[n + 1] - Fibonacci[n], {n, 0, 40}] (* Harvey P. Dale, Apr 21 2011 *)
Table[(n - 1) Fibonacci[n] + n Fibonacci[n - 1], {n, 0, 40}] (* Bruno Berselli, Dec 06 2013 *)
-
concat(vector(2), Vec(x^2*(x+3)/(x^2+x-1)^2 + O(x^50))) \\ Colin Barker, Jul 26 2017
A215082
Related to Fibonacci numbers, see the Formula section.
Original entry on oeis.org
0, 1, 1, 3, 4, 5, 8, 12, 17, 23, 35, 43, 66, 81, 124, 148, 229, 266, 414, 476, 742, 842, 1318, 1478, 2320, 2581, 4059, 4481, 7062, 7743, 12224, 13328, 21071, 22857, 36185, 39073, 61930, 66605, 105678, 113242, 179847, 192084, 305326, 325128, 517212, 549252
Offset: 0
a(2) + a(3) = 2*2 = 4 -> a(3) = 3.
a(4) = a(3) + a(1) = 3 + 1 = 4.
a(4) + a(5) = 3*3 = 9 -> a(5) = 5.
a(6) = a(5) + a(3) = 5 + 3 = 8 , etc.
-
a:= n-> (Matrix(6, (i, j)-> `if`(i=j-1, 1, `if`(i=6, [-1, -3, -2, 1, 2, 1][j], 0)))^iquo(n, 2, 'r'). `if`(r=0, <<0, 1, 4, 8, 17, 35>>, <<1, 3, 5, 12, 23, 43>>))[1, 1]: seq (a(n), n=0..50); # Alois P. Heinz, Aug 02 2012
A264147
a(n) = n*F(n+1) - (n+1)*F(n), where F = A000045.
Original entry on oeis.org
0, -1, 1, 1, 5, 10, 22, 43, 83, 155, 285, 516, 924, 1639, 2885, 5045, 8773, 15182, 26162, 44915, 76855, 131119, 223101, 378696, 641400, 1084175, 1829257, 3081193, 5181893, 8702290, 14594830, 24446971, 40902299, 68359619, 114132765, 190373580, 317258388, 528265207
Offset: 0
Cf.
A178521: n*F(n+1) + (n+1)*F(n).
Cf.
A099920: Sum_{i=0..n} F(i)*L(n-i).
Cf.
A023607: Sum_{i=0..n} F(i)*L(n+1-i).
-
# The function 'fibrec' is defined in A354044.
function A264147(n)
n == 0 && return BigInt(0)
a, b = fibrec(n)
n*b - a*(n + 1)
end # Peter Luschny, May 16 2022
-
[n*Fibonacci(n+1)-(n+1)*Fibonacci(n): n in [0..40]];
-
A264147 := proc(n)
n*combinat[fibonacci](n+1)-(n+1)*combinat[fibonacci](n) ;
end proc:
seq(A264147(n),n=0..10) ; # R. J. Mathar, Jun 02 2022
-
Table[n Fibonacci[n + 1] - (n + 1) Fibonacci[n], {n, 0, 40}]
-
makelist(n*fib(n+1)-(n+1)*fib(n), n, 0, 40);
-
for(n=0, 40, print1(n*fibonacci(n+1)-(n+1)*fibonacci(n)", "));
-
concat(0, Vec(-x*(1 - 3*x) / (1 - x - x^2)^2 + O(x^50))) \\ Colin Barker, Jul 27 2017
-
[n*fibonacci(n+1)-(n+1)*fibonacci(n) for n in (0..40)]
Showing 1-10 of 19 results.
Comments