cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A114525 Triangle of coefficients of the Lucas (w-)polynomials.

Original entry on oeis.org

2, 0, 1, 2, 0, 1, 0, 3, 0, 1, 2, 0, 4, 0, 1, 0, 5, 0, 5, 0, 1, 2, 0, 9, 0, 6, 0, 1, 0, 7, 0, 14, 0, 7, 0, 1, 2, 0, 16, 0, 20, 0, 8, 0, 1, 0, 9, 0, 30, 0, 27, 0, 9, 0, 1, 2, 0, 25, 0, 50, 0, 35, 0, 10, 0, 1, 0, 11, 0, 55, 0, 77, 0, 44, 0, 11, 0, 1, 2, 0, 36, 0, 105, 0, 112, 0, 54, 0, 12, 0, 1
Offset: 0

Views

Author

Eric W. Weisstein, Dec 06 2005

Keywords

Comments

Unsigned version of A108045.
The row reversed triangle is A162514. - Paolo Bonzini, Jun 23 2016

Examples

			2, x, 2 + x^2, 3*x + x^3, 2 + 4*x^2 + x^4, 5*x + 5*x^3 + x^5, ... give triangle
  n\k   0  1  2  3  4  5  6  7  8  9 10 ...
  0:    2
  1:    0  1
  2:    2  0  1
  3:    0  3  0  1
  4:    2  0  4  0  1
  5:    0  5  0  5  0  1
  6:    2  0  9  0  6  0  1
  7:    0  7  0 14  0  7  0  1
  8:    2  0 16  0 20  0  8  0  1
  9:    0  9  0 30  0 27  0  9  0  1
  10:   2  0 25  0 50  0 35  0 10  0  1
  n\k   0  1  2  3  4  5  6  7  8  9 10 ...
  .... reformatted by _Wolfdieter Lang_, Feb 10 2023
		

Crossrefs

Cf. A108045 (signed version).
Cf. Sequences L(n,x): A000032(x = 1), A002203 (x = 2), A006497 (x = 3), A014448 (x = 4), A087130 (x = 5), A085447 (x = 6), A086902 (x = 7), A086594 (x = 8), A087798 (x = 9), A086927 (x = 10), A001946 (x = 11), A086928 (x = 12), A088316 (x = 13), A090300 (x = 14), A090301 (x = 15), A090305 (x = 16), A090306 (x = 17), A090307 (x = 18), A090308 (x = 19), A090309 (x = 20), A090310 (x = 21), A090313 (x = 22), A090314 (x = 23), A090316 (x = 24), A087281 (x = 29), A087287 (x = 76), A089772 (x = 199).

Programs

  • Maple
    Lucas := proc(n,x)
        option remember;
        if  n=0 then
            2;
        elif n =1 then
            x ;
        else
            x*procname(n-1,x)+procname(n-2,x) ;
        end if;
    end proc:
    A114525 := proc(n,k)
        coeftayl(Lucas(n,x),x=0,k) ;
    end proc:
    seq(seq(A114525(n,k),k=0..n),n=0..12) ; # R. J. Mathar, Aug 16 2019
  • Mathematica
    row[n_] := CoefficientList[LucasL[n, x], x];
    Table[row[n], {n, 0, 12}] // Flatten (* Jean-François Alcover, Aug 11 2018 *)

Formula

From Peter Bala, Mar 18 2015: (Start)
The Lucas polynomials L(n,x) satisfy the recurrence L(n+1,x) = x*L(n,x) + L(n-1,x) with L(0,x) = 2 and L(1,x) = x.
O.g.f.: Sum_{n >= 0} L(n,x)*t^n = (2 - x*t)/(1 - t^2 - x*t) = 2 + x*t + (x^2 + 2)*t^2 + (3*x + x^3)*t^3 + ....
L(n,x) = trace( [ x, 1; 1, 0 ]^n ).
exp( Sum_{n >= 1} L(n,x)*t^n/n ) = Sum_{n >= 0} F(n+1,x)*t^n, where F(n,x) denotes the n-th Fibonacci polynomial. (see Appendix A3 in Johnson).
exp( Sum_{n >= 1} L(n,x)*L(2*n,x)*t^n/n ) = 1/( F(1,x)*F(2*x)*F(3,x) ) * Sum_{n >= 0} F(n+1,x)*F(n+2,x)*F(n+3,x)*t^n.
exp( Sum_{n >= 1} L(3*n,x)/L(n,x)*t^n/n ) = Sum_{n >= 0} L(2*n + 1,x)*t^n.
L(n,1) = Lucas(n) = A000032(n); L(n,4) = Lucas(3*n) = A014448(n); L(n,11) = Lucas(5*n) = A001946(n); L(n,29) = Lucas(7*n) = A087281(n); L(n,76) = Lucas(9*n) = A087287(n); L(n,199) = Lucas(11*n) = A089772(n). The general result is L(n,Lucas(2*k + 1)) = Lucas((2*k + 1)*n). (End)
From Jeremy Dover, Jun 10 2016: (Start)
Read as a triangle T(n,k), n >= 0, n >= k >= 0, T(n,k) = (Binomial((n+k)/2,k) + Binomial((n+k-2)/2,k))*(1+(-1)^(n-k))/2.
T(n,k) = A046854(n-1,k-1) + A046854(n-1,k) + A046854(n-2,k) for even n+k with n+k > 0, assuming A046854(n,k) = 0 for n < 0, k < 0, k > n.
T(n,k) is the number of binary strings of length n with exactly k pairs of consecutive 0's and no pair of consecutive 1's, where the first and last bits are considered consecutive. (End)
From Peter Bala, Sep 03 2022: (Start)
L(n,x) = 2*(i)^n*T(n,-i*x/2), where i = sqrt(-1) and T(n,x) is the n-th Chebyshev polynomial of the first kind.
d/dx(L(n,x)) = n*F(n,x), where F(n,x) denotes the n-th Fibonacci polynomial.
Let P_n(x,y) = (L(n,x) - L(n,y))/(x - y). Then {P_n(x,y): n >= 1} is a fourth-order linear divisibility sequence of polynomials in the ring Z[x,y]: if m divides n in Z then P_m(x,y) divides P_n(x,y) in Z[x,y].
P_n(1,1) = A045925(n); P_n(1,4) = A273622; P_n(2,2) = A093967(n).
L(2*n,x)^2 - L(2*n-1,x)*L(2*n+1,x) = x^2 + 4 for n >= 1.
Sum_{n >= 1} L(2*n,x)/( L(2*n-1,x) * L(2*n+1,x) ) = 1/x^2 and
Sum_{n >= 1} (-1)^(n+1)/( L(2*n,x) + x^2/L(2*n,x) ) = 1/(x^2 + 4), both valid for all nonzero real x. (End)
From Peter Bala, Nov 18 2022: (Start)
L(n,x) = Sum_{k = 0..floor(n/2)} (n/(n-k))*binomial(n-k,k)*x^(n-2*k) for n >= 1.
For odd m, L(n, L(m,x)) = L(n*m, x).
For integral x, the sequence {u(n)} := {L(n,x)} satisfies the Gauss congruences: u(m*p^r) == u(m*p^(r-1)) (mod p^r) for all positive integers m and r and all primes p.
Let p be an odd prime and let 0 <= k <= p - 1. Let alpha_k = the p-adic limit_{n -> oo} L(p^n,k). Then alpha_k is a well-defined p-adic-integer and the polynomial L(p,x) - x of degree p factorizes as L(p,x) - x = Product_{k = 0..p-1} (x - alpha_k). For example, L(5,x) - x = x^5 + 5*x^3 + 4*x = x*(x - A269591)*(x - A210850)*(x - A210851)*(x - A269592) in the ring of 5-adic integers. (End)
The formula for L(n,x) given in the first line of the preceding section, with L(0, x) = 2, is rewritten L(n, x) = Sum_{k = 0..floor(n/2)} A034807(n, k)*x^(n - 2*k). See the formula by Alexander Elkins in A034807. - Wolfdieter Lang, Feb 10 2023

A127670 Discriminants of Chebyshev S-polynomials A049310.

Original entry on oeis.org

1, 4, 32, 400, 6912, 153664, 4194304, 136048896, 5120000000, 219503494144, 10567230160896, 564668382613504, 33174037869887488, 2125764000000000000, 147573952589676412928, 11034809241396899282944, 884295678882933431599104, 75613185918270483380568064
Offset: 1

Views

Author

Wolfdieter Lang, Jan 23 2007

Keywords

Comments

a(n-1) is the number of fixed n-cell polycubes that are proper in n-1 dimensions (Barequet et al., 2010).
From Rigoberto Florez, Sep 02 2018: (Start)
a(n-1) is the discriminant of the Morgan-Voyce Fibonacci-type polynomial B(n).
Morgan-Voyce Fibonacci-type polynomials are defined as B(0) = 0, B(1) = 1 and B(n) = (x+2)*B(n-1) - B(n-2) for n > 1.
The absolute value of the discriminant of Fibonacci polynomial F(n) is a(n-1).
Fibonacci polynomials are defined as F(0) = 0, F(1) = 1 and F(n) = x*F(n-1) + F(n-2) for n > 1. (End)
The first 6 values are the dimensions of the polynomial ring in 3n variables xi, yi, zi for 1 <= i <= n modulo the ideal generated by x1^a y1^b z1^c + ... + xn^a yn^b zn^c for 0 < a+b+c <= n (see Fact 2.8.1 in Haiman's paper). - Mike Zabrocki, Dec 31 2019

Examples

			n=3: The zeros are [sqrt(2),0,-sqrt(2)]. The Vn(xn[1],...,xn[n]) matrix is [[1,1,1],[sqrt(2),0,-sqrt(2)],[2,0,2]]. The squared determinant is 32 = a(3). - _Wolfdieter Lang_, Aug 07 2011
		

References

  • Gill Barequet, Solomon W. Golomb, and David A. Klarner, Polyominoes. (This is a revision, by G. Barequet, of the chapter of the same title originally written by the late D. A. Klarner for the first edition, and revised by the late S. W. Golomb for the second edition.) Preprint, 2016, http://www.csun.edu/~ctoth/Handbook/chap14.pdf.
  • G. Barequet and M. Shalah, Automatic Proofs for Formulae Enumerating Proper Polycubes, 31st International Symposium on Computational Geometry (SoCG'15). Editors: Lars Arge and János Pach; pp. 19-22, 2015.
  • Theodore J. Rivlin, Chebyshev polynomials: from approximation theory to algebra and number theory, 2. ed., Wiley, New York, 1990; p. 219 for T and U polynomials.

Crossrefs

Cf. A007701 (T-polynomials), A086804 (U-polynomials), A171860 and A191092 (fixed n-cell polycubes proper in n-2 and n-3 dimensions, resp.).
A317403 is essentially the same sequence.
Diagonal 1 of A195739.

Programs

  • Magma
    [((n+1)^n/(n+1)^2)*2^n: n in [1..20]]; // Vincenzo Librandi, Jun 23 2014
  • Mathematica
    Table[((n + 1)^n)/(n + 1)^2 2^n, {n, 1, 30}] (* Vincenzo Librandi, Jun 23 2014 *)

Formula

a(n) = ((n+1)^(n-2))*2^n, n >= 1.
a(n) = (Det(Vn(xn[1],...,xn[n])))^2 with the determinant of the Vandermonde matrix Vn with elements (Vn)i,j:= xn[i]^j, i=1..n, j=0..n-1 and xn[i]:=2*cos(Pi*i/(n+1)), i=1..n, are the zeros of S(n,x):=U(n,x/2).
a(n) = ((-1)^(n*(n-1)/2))*Product_{j=1..n} ((d/dx)S(n,x)|_{x=xn[j]}), n >= 1, with the zeros xn[j], j=1..n, given above.
a(n) = A007830(n-2)*A000079(n), n >= 2. - Omar E. Pol, Aug 27 2011
E.g.f.: -LambertW(-2*x)*(2+LambertW(-2*x))/(4*x). - Vaclav Kotesovec, Jun 22 2014

Extensions

Slightly edited by Gill Barequet, May 24 2011

A269011 T(n,k)=Number of nXk binary arrays with some element plus some horizontally, diagonally or antidiagonally adjacent neighbor totalling two exactly once.

Original entry on oeis.org

0, 1, 0, 2, 4, 0, 5, 8, 15, 0, 10, 36, 46, 48, 0, 20, 88, 305, 224, 145, 0, 38, 272, 1078, 2136, 1066, 420, 0, 71, 696, 4948, 10976, 14240, 4952, 1183, 0, 130, 1900, 18210, 73568, 109058, 91048, 22654, 3264, 0, 235, 4856, 73277, 390064, 1049588, 1053432, 566656
Offset: 1

Views

Author

R. H. Hardin, Feb 17 2016

Keywords

Comments

Table starts
.0.....1.......2.........5.........10...........20.............38
.0.....4.......8........36.........88..........272............696
.0....15......46.......305.......1078.........4948..........18210
.0....48.....224......2136......10976........73568.........390064
.0...145....1066.....14240.....109058......1049588........8134304
.0...420....4952.....91048....1053432.....14382480......164351184
.0..1183...22654....566656...10002542....192100836.....3258530608
.0..3264..102416...3456320...93733440...2516546784....63679868768
.0..8865..458674..20760192..869397882..32481770852..1230707111424
.0.23780.2038328.123186784.7996744280.414339126768.23573013881888

Examples

			Some solutions for n=4 k=4
..1..1..0..0. .0..0..1..0. .1..0..1..1. .0..1..0..0. .0..0..0..0
..0..0..0..1. .0..0..1..0. .1..0..0..0. .0..0..1..0. .1..0..0..0
..0..0..0..0. .1..0..0..0. .1..0..0..1. .0..0..1..0. .0..1..0..0
..0..1..0..1. .0..0..1..1. .0..0..0..0. .0..0..0..0. .0..1..0..0
		

Crossrefs

Column 2 is A093967.
Row 1 is A001629.

Formula

Empirical for column k:
k=1: a(n) = a(n-1)
k=2: a(n) = 4*a(n-1) -2*a(n-2) -4*a(n-3) -a(n-4)
k=3: a(n) = 10*a(n-1) -31*a(n-2) +24*a(n-3) +21*a(n-4) -18*a(n-5) -9*a(n-6)
k=4: a(n) = 12*a(n-1) -40*a(n-2) +8*a(n-3) +92*a(n-4) -32*a(n-5) -64*a(n-6) for n>7
k=5: [order 12]
k=6: [order 14]
k=7: [order 24] for n>25
Empirical for row n:
n=1: a(n) = 2*a(n-1) +a(n-2) -2*a(n-3) -a(n-4)
n=2: a(n) = 2*a(n-1) +5*a(n-2) -6*a(n-3) -9*a(n-4)
n=3: a(n) = 4*a(n-1) +8*a(n-2) -34*a(n-3) -16*a(n-4) +60*a(n-5) -25*a(n-6)
n=4: [order 8]
n=5: [order 14]
n=6: [order 20]
n=7: [order 32]

A268740 T(n,k)=Number of nXk binary arrays with some 1 horizontally or vertically adjacent to some other 1 exactly once.

Original entry on oeis.org

0, 1, 1, 2, 4, 2, 5, 15, 15, 5, 10, 48, 80, 48, 10, 20, 145, 396, 396, 145, 20, 38, 420, 1788, 2876, 1788, 420, 38, 71, 1183, 7831, 19591, 19591, 7831, 1183, 71, 130, 3264, 33170, 128232, 200204, 128232, 33170, 3264, 130, 235, 8865, 137868, 816009, 1971414
Offset: 1

Views

Author

R. H. Hardin, Feb 12 2016

Keywords

Comments

Table starts
...0.....1.......2.........5..........10............20.............38
...1.....4......15........48.........145...........420...........1183
...2....15......80.......396........1788..........7831..........33170
...5....48.....396......2876.......19591........128232.........816009
..10...145....1788.....19591......200204.......1971414.......18847982
..20...420....7831....128232.....1971414......29134076......418632185
..38..1183...33170....816009....18847982.....418632185.....9039552112
..71..3264..137868...5087814...176668038....5894815754...191307160577
.130..8865..563486..31228804..1629738420...81718671716..3985770068310
.235.23780.2275119.189328186.14851460143.1119014223138.82030747371058

Examples

			Some solutions for n=4 k=4
..0..1..0..1. .0..0..0..1. .0..1..0..1. .0..0..1..0. .0..1..0..0
..1..0..0..0. .1..0..0..0. .0..0..0..1. .1..1..0..0. .1..0..0..1
..0..1..0..1. .0..1..1..0. .0..0..0..0. .0..0..1..0. .0..1..1..0
..0..0..0..1. .1..0..0..0. .1..0..1..0. .0..0..0..0. .1..0..0..0
		

Crossrefs

Column 1 is A001629.
Column 2 is A093967.

Formula

Empirical for column k:
k=1: a(n) = 2*a(n-1) +a(n-2) -2*a(n-3) -a(n-4)
k=2: a(n) = 4*a(n-1) -2*a(n-2) -4*a(n-3) -a(n-4)
k=3: a(n) = 4*a(n-1) +8*a(n-2) -24*a(n-3) -38*a(n-4) +4*a(n-5) +12*a(n-6) -a(n-8)
k=4: [order 10]
k=5: [order 18]
k=6: [order 22]
k=7: [order 42]

A093968 Inverse binomial transform of n*Pell(n).

Original entry on oeis.org

0, 1, 2, 6, 8, 20, 24, 56, 64, 144, 160, 352, 384, 832, 896, 1920, 2048, 4352, 4608, 9728, 10240, 21504, 22528, 47104, 49152, 102400, 106496, 221184, 229376, 475136, 491520, 1015808, 1048576, 2162688, 2228224, 4587520, 4718592, 9699328, 9961472, 20447232, 20971520
Offset: 0

Views

Author

Paul Barry, Apr 21 2004

Keywords

Comments

Binomial transform is A093967.
Binomial transform of (-1)^(n+1)(n*Pell(n-2)) (see A093969).
S-D transform of A001477 (cf. A051159). - Philippe Deléham, Aug 01 2006
a(n) is also the number of projective permutations of vertices of regular n-gons. A permutation of n vertices (AFB...CD) is considered 'projective' if there exists a line so that all the vertices can be projected onto it and the resulted points can be read in the same order: A'F'B'...C'D'. - Anton Zakharov, Jul 25 2016

Examples

			a(3) = 6, as there are only 6 projective permutations of vertices in a triangle ABC: ABC,CBA,ACB,BCA,CAB,BAC and it is equal to the number of simple permutations of three elements.
a(4) = 8, as there are only 8 permutations of vertices in a square, satisfying the projective criterion: ADBC,DACB,DCAB,CDBA,CBDA,BCAD,BACD,ABDC. ADCB is not allowed, cause there is no way to draw a line so that the projections A'B'C'D' of the original points form a line segment B'C' lying inside A'D' on this line. - _Anton Zakharov_, Jul 25 2016
		

Crossrefs

Programs

  • Mathematica
    a[n_] := n*2^Floor[(n - 1)/2]; Array[a, 40, 0] (* Amiram Eldar, Feb 13 2023 *)

Formula

G.f.: x(1+2x+2x^2)/(1-2x^2)^2;
a(n) = 2^((n-4)/2)n((1+sqrt(2)) + (1-sqrt(2))(-1)^n).
a(2n) = A036289(n). a(2n+1) = A014480(n). - R. J. Mathar, Jun 02 2011
G.f.: x*G(0)/(1-x) where G(k) = 1 + x/(k+1 - 2*x*(k+1)*(k+2)/(2*x*(k+2) + 1/G(k+1) )); (recursively defined continued fraction). - Sergei N. Gladkovskii, Feb 01 2013
a(n) = n*2^floor((n-1)/2). - Anton Zakharov, Jul 25 2016
E.g.f.: x*(sqrt(2)*sinh(sqrt(2)*x) + 2*cosh(sqrt(2)*x))/2. - Ilya Gutkovskiy, Jul 25 2016
Sum_{n>=1} 1/a(n) = log(2) + sqrt(2)*log(1+sqrt(2)). - Amiram Eldar, Feb 13 2023

A340291 a(n) = 4^(2*n^2) * Product_{1<=j,k<=n} (1 - cos(j*Pi/(2*n+1))^2 * cos(k*Pi/(2*n+1))^2).

Original entry on oeis.org

1, 15, 32625, 8238791743, 230629380093001665, 703130165949449759361247759, 231459008314298532714943209968328640625, 8186710889725936196671113787217620194601044287109375
Offset: 0

Views

Author

Seiichi Manyama, Jan 03 2021

Keywords

Crossrefs

Programs

  • Mathematica
    Table[2^(4*n^2) * Product[Product[1 - Cos[j*Pi/(2*n+1)]^2 * Cos[k*Pi/(2*n+1)]^2, {j, 1, n}], {k, 1, n}], {n, 0, 10}] // Round (* Vaclav Kotesovec, Jan 03 2021 *)
  • PARI
    default(realprecision, 120);
    {a(n) = round(4^(2*n^2)*prod(j=1, n, prod(k=1, n, 1-(cos(j*Pi/(2*n+1))*cos(k*Pi/(2*n+1)))^2)))}

Formula

a(n) = A093967(2*n+1) * A340185(n)^2.
a(n) ~ Gamma(1/4) * exp(2*G*(2*n+1)^2/Pi) / (Pi^(3/4) * sqrt(n) * 2^(2*n + 2)), where G is Catalan's constant A006752. - Vaclav Kotesovec, Jan 03 2021

A364553 Number of edges in the n-Pell graph.

Original entry on oeis.org

0, 1, 5, 18, 58, 175, 507, 1428, 3940, 10701, 28705, 76230, 200766, 525083, 1365175, 3531240, 9093512, 23325785, 59625981, 151947066, 386139650, 978834759, 2475645491, 6248406780, 15740857452, 39585199525, 99389810585, 249177006702, 623846750086, 1559888545075
Offset: 0

Views

Author

Eric W. Weisstein, Jul 28 2023

Keywords

Comments

For n > 0, also the number of maximum and maximal cliques in the n-Pell graph.

Crossrefs

Programs

  • Maple
    A364553 := n -> (n/8)*((2 + sqrt(2))*(1 + sqrt(2))^n - (sqrt(2) - 2)*(1 - sqrt(2))^n): seq(simplify(A364553(n)), n=0..29); # Peter Luschny, Jul 30 2023
  • Mathematica
    Table[n Fibonacci[n + 1, 2]/2, {n, 0, 20}]
    Table[n (Fibonacci[n, 2] + (-I)^n ChebyshevT[n, I])/2, {n, 0, 20}]
    Table[With[{s = Sqrt[2]}, n ((s + 2) (1 + s)^n - (s - 2) (1 - s)^n)/8], {n, 0, 20}] // Expand
    LinearRecurrence[{4, -2, -4, -1}, {0, 1, 5, 18}, 20]
    CoefficientList[Series[x (1 + x)/(-1 + 2 x + x^2)^2, {x, 0, 20}], x]
  • Python
    # Using function 'delannoy_row' from A008288.
    def A364553(n:int) -> int:
        return sum(k * delannoy_row(n)[k] for k in range(n + 1))
    print([A364553(n) for n in range(30)])  # Peter Luschny, Jul 30 2023

Formula

a(n) = n*(A000129(n) + A001333(n))/2.
a(n) = n*A000129(n+1)/2.
a(n) = 4*a(n-1) - 2*a(n-2) - 4*a(n-3) - a(n-4).
G.f.: x*(1+x)/(-1+2*x+x^2)^2.
From Peter Luschny, Jul 31 2023: (Start)
a(n) = (n/8)*((2 + sqrt(2))*(1 + sqrt(2))^n - (sqrt(2) - 2)*(1 - sqrt(2))^n).
With this formula, the sequence can be continued to the left half of the number line: a(-n) = -(-1)^n*A026937(n-2) for n >= 0.
a(n) = (A093967(n) + A364636(n)) / 2.
a(n) = Sum_{k=0..n} k * A008288(n, k). (End)

A086804 a(0)=0; for n > 0, a(n) = (n+1)^(n-2)*2^(n^2).

Original entry on oeis.org

0, 1, 16, 2048, 1638400, 7247757312, 164995463643136, 18446744073709551616, 9803356117276277820358656, 24178516392292583494123520000000, 271732164163901599116133024293512544256
Offset: 0

Views

Author

Yuval Dekel (dekelyuval(AT)hotmail.com), Aug 05 2003

Keywords

Comments

Discriminant of Chebyshev polynomial U_n (x) of second kind.
Chebyshev second kind polynomials are defined by U(0)=0, U(1)=1 and U(n) = 2xU(n-1) - U(n-2) for n > 1.
The absolute value of the discriminant of Pell polynomials is a(n-1).
Pell polynomials are defined by P(0)=0, P(1)=1 and P(n) = 2x P(n-1) + P(n-2) if n > 1. - Rigoberto Florez, Sep 01 2018

References

  • Theodore J. Rivlin, Chebyshev polynomials: from approximation theory to algebra and number theory, 2. ed., Wiley, New York, 1990; p. 219, 5.1.2.

Crossrefs

Programs

  • Magma
    [0] cat [(n+1)^(n-2)*2^(n^2): n in [1..10]]; // G. C. Greubel, Nov 11 2018
  • Mathematica
    Join[{0},Table[(n+1)^(n-2) 2^n^2,{n,10}]] (* Harvey P. Dale, May 01 2015 *)
  • PARI
    a(n)=if(n<1,0,(n+1)^(n-2)*2^(n^2))
    
  • PARI
    a(n)=if(n<1,0,n++; poldisc(poltchebi(n)'/n))
    

Formula

a(n) = ((n+1)^(n-2))*2^(n^2), n >= 1, a(0):=0.
a(n) = ((2^(2*(n-1)))*Det(Vn(xn[1],...,xn[n])))^2, n >= 1, with the determinant of the Vandermonde matrix Vn with elements (Vn)i,j:= xn[i]^j, i=1..n, j=0..n-1 and xn[i]:=cos(Pi*i/(n+1)), i=1..n, are the zeros of the Chebyshev U(n,x) polynomials.
a(n) = ((-1)^(n*(n-1)/2))*(2^(n*(n-2)))*Product_{i=1..n}((d/dx)U(n,x)|_{x=xn[i]}), n >= 1, with the zeros xn[i], i=1..n, given above.

Extensions

Formula and more terms from Vladeta Jovovic, Aug 07 2003

A093969 a(n) = n*Pell(n-2).

Original entry on oeis.org

0, 1, 0, 3, 8, 25, 72, 203, 560, 1521, 4080, 10835, 28536, 74633, 194040, 501915, 1292512, 3315425, 8474976, 21597091, 54884200, 139127289, 351877416, 888121195, 2237336592, 5626467025, 14126832720, 35416929267, 88670846936
Offset: 0

Views

Author

Paul Barry, Apr 21 2004

Keywords

Comments

The signed version (-1)^(n+1)*n*Pell(n-2) is the second inverse binomial transform of A093967.

Crossrefs

Cf. A000129.

Formula

G.f.: x(1-4x+5x^2)/(1-2x-x^2)^2;
a(n) = n*(1 + sqrt(2))^n*(3*sqrt(2)/4 - 1) - n*(1 - sqrt(2))^n*(3*sqrt(2)/4 + 1).

A364636 a(n) = ((1 - sqrt(2))^n + (1 + sqrt(2))^n)*n/2.

Original entry on oeis.org

0, 1, 6, 21, 68, 205, 594, 1673, 4616, 12537, 33630, 89309, 235212, 615173, 1599402, 4137105, 10653712, 27327857, 69856182, 178017061, 452390740, 1146776253, 2900399106, 7320463897, 18441561624, 46376946025, 116442406158, 291929022189, 730881930716, 1827523107829
Offset: 0

Views

Author

Peter Luschny, Jul 30 2023

Keywords

Crossrefs

Programs

  • Maple
    A364636 := n -> ((1 - sqrt(2))^n + (1 + sqrt(2))^n)*n / 2:
    seq(simplify(A364636(n)), n = 0..29);
  • PARI
    a(n) = ((1 - quadgen(8))^n + (1 + quadgen(8))^n)*n/2; \\ Michel Marcus, Jul 31 2023

Formula

The sequence can be continued to all ZZ, and a(-n) = -(-1)^n*a(n).
a(n) = [x^n] (x + 2*x^2 - x^3)/(-1 + x*(2 + x))^2.
a(n) = 2*A364553(n) - A093967(n).
Showing 1-10 of 12 results. Next