cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A026937 a(n) = Sum_{k=0..n} (k+1)*T(n, n-k), where T is given by A008288.

Original entry on oeis.org

1, 3, 10, 30, 87, 245, 676, 1836, 4925, 13079, 34446, 90090, 234227, 605865, 1560200, 4002072, 10230201, 26069995, 66251090, 167941494, 424753615, 1072057117, 2700704172, 6791746500, 17052595573, 42752015487, 107035180630, 267634562754, 668407232235, 1667467065425
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    I:=[1, 3, 10, 30]; [n le 4 select I[n] else 4*Self(n-1)-2*Self(n-2)-4*Self(n-3)-Self(n-4): n in [1..30]]; // Vincenzo Librandi, Jun 20 2012
    
  • Maple
    with (combinat):seq(add(fibonacci(n,2),k=0..n)/2,n=1..27); # Zerinvary Lajos, May 25 2008
  • Mathematica
    CoefficientList[Series[(1-x)/(1-2x-x^2)^2,{x,0,40}],x]  (* Harvey P. Dale, Mar 22 2011 *)
    LinearRecurrence[{4,-2,-4,-1},{1,3,10,30},40] (* Vincenzo Librandi, Jun 20 2012 *)
    Table[(1/2)*(n+2)*Fibonacci[n+1, 2], {n, 0, 40}] (* G. C. Greubel, May 25 2021 *)
  • PARI
    my(x='x+O('x^40)); Vec((1-x)/(1-2*x-x^2)^2) \\ Altug Alkan, Sep 20 2018
    
  • PARI
    a(n) = my(w=quadgen(8)); (n/8)*((2+w)*(1+w)^n - (w-2)*(1-w)^n); \\ Michel Marcus, Jul 31 2023
    
  • Sage
    [(1/2)*(n+2)*lucas_number1(n+1,2,-1) for n in (0..40)] # G. C. Greubel, May 25 2021

Formula

G.f.: (1-x)/(1 - 2*x - x^2)^2.
a(n) = Sum_{k=0..n+1} A000129(k)*A001333(n+1-k). - Graeme McRae, Aug 03 2006 and Michel Marcus, Aug 01 2023
a(n) = A006645(n+2) - A006645(n+1). - R. J. Mathar, Jan 27 2011
a(n) = 4*a(n-1) - 2*a(n-2) - 4*a(n-3) - a(n-4). - Vincenzo Librandi, Jun 20 2012
a(n) = ((n+2)/2)*A000129(n+1). - G. C. Greubel, May 25 2021
a(n) = ((n+2)/8)*((sqrt(2) + 2)*(1 + sqrt(2))^n - (sqrt(2) - 2)*(1 - sqrt(2))^n). - Peter Luschny, Jul 31 2023
a(n) = A361732(n+2)/2. - R. J. Mathar, Jun 30 2025

A364361 Table read by rows. T(n, k) = Sum_{j=0..n-k} k*binomial(k, j)*binomial(n - j, k).

Original entry on oeis.org

0, 0, 1, 0, 3, 2, 0, 5, 10, 3, 0, 7, 26, 21, 4, 0, 9, 50, 75, 36, 5, 0, 11, 82, 189, 164, 55, 6, 0, 13, 122, 387, 516, 305, 78, 7, 0, 15, 170, 693, 1284, 1155, 510, 105, 8, 0, 17, 226, 1131, 2724, 3405, 2262, 791, 136, 9, 0, 19, 290, 1725, 5156, 8415, 7734, 4025, 1160, 171, 10
Offset: 0

Views

Author

Peter Luschny, Jul 30 2023

Keywords

Examples

			The triangle begins:
  [0] 0;
  [1] 0,  1;
  [2] 0,  3,   2;
  [3] 0,  5,  10,   3;
  [4] 0,  7,  26,   21,    4;
  [5] 0,  9,  50,   75,   36,    5;
  [6] 0, 11,  82,  189,  164,   55,    6;
  [7] 0, 13, 122,  387,  516,  305,   78,   7;
  [8] 0, 15, 170,  693, 1284, 1155,  510, 105,   8;
  [9] 0, 17, 226, 1131, 2724, 3405, 2262, 791, 136, 9;
Seen as an array:
  [0] 0,  1,   2,   3,     4,     5,      6,      7, ...  A001477
  [1] 0,  3,  10,   21,   36,    55,     78,    105, ...  A014105
  [2] 0,  5,  26,   75,  164,   305,    510,    791, ...  A048395
  [3] 0,  7,  50,  189,  516,  1155,   2262,   4025, ...
  [4] 0,  9,  82,  387, 1284,  3405,   7734,  15687, ...
  [5] 0, 11, 122,  693, 2724,  8415,  21918,  50281, ...
  [6] 0, 13, 170, 1131, 5156, 18265,  53934, 138775, ...
  [7] 0, 15, 226, 1725, 8964, 35915, 118950, 340473, ...
    A005408|A069894
		

Crossrefs

Cf. A364553 (row sums), A364634 (main diagonal).
Columns: A005408, A069894.

Programs

  • Maple
    T := (n, k) -> local j; add(k*binomial(k, j)*binomial(n-j, k), j = 0..n-k):
    seq(seq(T(n, k), k = 0..n), n = 0..10);

Formula

T(2*n, n) = n * LegendreP(n, 3).

A364636 a(n) = ((1 - sqrt(2))^n + (1 + sqrt(2))^n)*n/2.

Original entry on oeis.org

0, 1, 6, 21, 68, 205, 594, 1673, 4616, 12537, 33630, 89309, 235212, 615173, 1599402, 4137105, 10653712, 27327857, 69856182, 178017061, 452390740, 1146776253, 2900399106, 7320463897, 18441561624, 46376946025, 116442406158, 291929022189, 730881930716, 1827523107829
Offset: 0

Views

Author

Peter Luschny, Jul 30 2023

Keywords

Crossrefs

Programs

  • Maple
    A364636 := n -> ((1 - sqrt(2))^n + (1 + sqrt(2))^n)*n / 2:
    seq(simplify(A364636(n)), n = 0..29);
  • PARI
    a(n) = ((1 - quadgen(8))^n + (1 + quadgen(8))^n)*n/2; \\ Michel Marcus, Jul 31 2023

Formula

The sequence can be continued to all ZZ, and a(-n) = -(-1)^n*a(n).
a(n) = [x^n] (x + 2*x^2 - x^3)/(-1 + x*(2 + x))^2.
a(n) = 2*A364553(n) - A093967(n).
Showing 1-3 of 3 results.