A364553
Number of edges in the n-Pell graph.
Original entry on oeis.org
0, 1, 5, 18, 58, 175, 507, 1428, 3940, 10701, 28705, 76230, 200766, 525083, 1365175, 3531240, 9093512, 23325785, 59625981, 151947066, 386139650, 978834759, 2475645491, 6248406780, 15740857452, 39585199525, 99389810585, 249177006702, 623846750086, 1559888545075
Offset: 0
- E. Munarini, Pell Graphs, Disc. Math., 342 (2019), 2415-2428.
- Eric Weisstein's World of Mathematics, Edge Count
- Eric Weisstein's World of Mathematics, Maximal Clique
- Eric Weisstein's World of Mathematics, Maximum Clique
- Eric Weisstein's World of Mathematics, Pell Graph
- Index entries for linear recurrences with constant coefficients, signature (4,-2,-4,-1).
-
A364553 := n -> (n/8)*((2 + sqrt(2))*(1 + sqrt(2))^n - (sqrt(2) - 2)*(1 - sqrt(2))^n): seq(simplify(A364553(n)), n=0..29); # Peter Luschny, Jul 30 2023
-
Table[n Fibonacci[n + 1, 2]/2, {n, 0, 20}]
Table[n (Fibonacci[n, 2] + (-I)^n ChebyshevT[n, I])/2, {n, 0, 20}]
Table[With[{s = Sqrt[2]}, n ((s + 2) (1 + s)^n - (s - 2) (1 - s)^n)/8], {n, 0, 20}] // Expand
LinearRecurrence[{4, -2, -4, -1}, {0, 1, 5, 18}, 20]
CoefficientList[Series[x (1 + x)/(-1 + 2 x + x^2)^2, {x, 0, 20}], x]
-
# Using function 'delannoy_row' from A008288.
def A364553(n:int) -> int:
return sum(k * delannoy_row(n)[k] for k in range(n + 1))
print([A364553(n) for n in range(30)]) # Peter Luschny, Jul 30 2023
A088210
Numerators of convergents of the continued fraction with the n+1 partial quotients: [2;2,2,...(n 2's)...,2,n+1], starting with [1], [2;2], [2;2,3], [2;2,2,4], ...
Original entry on oeis.org
1, 5, 17, 53, 157, 449, 1253, 3433, 9273, 24765, 65529, 172061, 448853, 1164409, 3006157, 7728337, 19794545, 50532469, 128621281, 326513669, 826887693, 2089505841, 5269572021, 13265211961, 33336792745, 83648953133, 209591807177
Offset: 0
a(3)/A088211(3) = [2;2,2,4] = 53/22.
- R. P. Grimaldi, Ternary strings with no consecutive 0's and no consecutive 1's, Congressus Numerantium, 205 (2011), 129-149. (See the foot of page 136.)
-
LinearRecurrence[{4, -2, -4, -1}, {1, 5, 17, 53}, 30] (* Paolo Xausa, Feb 08 2024 *)
A164981
A triangle with Pell numbers in the first column.
Original entry on oeis.org
1, 2, 1, 5, 3, 1, 12, 10, 4, 1, 29, 30, 16, 5, 1, 70, 87, 56, 23, 6, 1, 169, 245, 185, 91, 31, 7, 1, 408, 676, 584, 334, 136, 40, 8, 1, 985, 1836, 1784, 1158, 546, 192, 50, 9, 1, 2378, 4925, 5312, 3850, 2052, 834, 260, 61, 10, 1, 5741, 13079, 15497, 12386, 7342, 3366, 1212, 341, 73, 11, 1
Offset: 1
Triangle begins
1
2,1
5,3,1
12,10,4,1
29,30,16,5,1
70,87,56,23,6,1
169,245,185,91,31,7,1
...
From _Philippe Deléham_, Oct 10 2013: (Start)
Triangle (0, 2, 1/2, -1/2, 0, 0, ...) DELTA (1, 0, -1/2, 1/2, 0, 0, ...):
1
0, 1
0, 2, 1
0, 5, 3, 1
0, 12, 10, 4, 1
0, 29, 30, 16, 5, 1
0, 70, 87, 56, 23, 6, 1
0, 169, 245, 185, 91, 31, 7, 1
... (End)
-
A164981 := proc(n,k) option remember; if n <1 or k<1 or k>n then 0; elif n = 1 then 1; else 2*procname(n-1,k)+procname(n-1,k-1)+procname(n-2,k)-procname(n-2,k-1) ; end if; end proc:
-
T[n_, k_] := T[n, k] = Which[n < 1 || k < 1 || k > n, 0, n == 1, 1, True, 2*T[n-1, k] + T[n-1, k-1] + T[n-2, k] - T[n-2, k-1]];
Table[T[n, k], {n, 1, 11}, {k, 1, n}] // Flatten (* Jean-François Alcover, Aug 06 2023 *)
-
T(n,k) = if ((n==1) && (k==1), return(1)); if ((n<=0) || (k<=0) || (nMichel Marcus, Feb 01 2023
A103415
Triangle, read by rows, T(n,k) = A000129(n+1) - Sum_{j=1..k} t(n+1, j), where t(n, k) is defined in the formula section.
Original entry on oeis.org
1, 2, 1, 5, 4, 1, 12, 11, 6, 1, 29, 28, 21, 8, 1, 70, 69, 60, 35, 10, 1, 169, 168, 157, 116, 53, 12, 1, 408, 407, 394, 333, 204, 75, 14, 1, 985, 984, 969, 884, 653, 332, 101, 16, 1, 2378, 2377, 2360, 2247, 1870, 1189, 508, 131, 18, 1, 5741, 5740, 5721, 5576, 5001, 3712, 2029, 740, 165, 20, 1
Offset: 0
Lambert Klasen (lambert.klasen(AT)gmx.net) and Gary W. Adamson, Feb 04 2005
Triangle begins as:
1;
2, 1;
5, 4, 1;
12, 11, 6, 1;
29, 28, 21, 8, 1;
70, 69, 60, 35, 10, 1;
169, 168, 157, 116, 53, 12, 1;
408, 407, 394, 333, 204, 75, 14, 1;
-
t[n_, k_]:= If[k==0, (2*Boole[n<2] + LucasL[n-1, 2]*Boole[n>1])/2, Binomial[n-1, k-1]*Hypergeometric2F1[1-k, k-n, 1-n, -1]];
st[n_, k_]:= Sum[t[n+1, j], {j,k}];
T[n_, k_]:= Fibonacci[n+1, 2] - st[n, k];
Table[T[n, k], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, May 25 2021 *)
-
Pell(n) = if( n<2, n, 2*Pell(n-1) + Pell(n-2) );
t(n, k) = if(n<3, 1, if(k==1||k==n, 1, t(n-1,k) + t(n-1,k-1) + t(n-2,k-1) ));
st(n, k) = sum(i=1, k, t(n+1,i));
T(n, k) = Pell(n+1) - st(n,k);
for(n=0, 10, for(k=0, n, print1(T(n,k), ",")); print()) \\ modified by G. C. Greubel, May 25 2021
-
@CachedFunction
def t(n,k): return 1 if (n<3) else 1 if (k==1 or k==n) else t(n-1,k) + t(n-1,k-1) + t(n-2,k-1)
def st(n,k): return sum(t(n+1, j) for j in (1..k))
def T(n,k): return lucas_number1(n+1,2,-1) - st(n,k)
flatten([[T(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, May 25 2021
Showing 1-4 of 4 results.
Comments