cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 29 results. Next

A193662 Q-residue of the Lucas triangle A114525, where Q is the triangle given by t(i,j)=1 for 0<=i<=j. (See Comments.)

Original entry on oeis.org

2, 1, 5, 7, 25, 51, 149, 351, 945, 2347, 6125, 15511, 40009, 102051, 262085, 670287, 1718625, 4399771, 11274269, 28873351
Offset: 0

Views

Author

Clark Kimberling, Aug 02 2011

Keywords

Comments

For the definition of Q-residue, see A193649.

Crossrefs

Programs

  • Mathematica
    q[n_, k_] := 1;
    r[0] = 1; r[k_] := Sum[q[k - 1, i] r[k - 1 - i], {i, 0, k - 1}];
    f[n_, x_] := LucasL[n, x];  (* A114525 *)
    p[n_, k_] := Coefficient[f[n, x], x, k];
    v[n_] := Sum[p[n, k] r[n - k], {k, 0, n}]
    Table[v[n], {n, 0, 16}]    (* A193662 *)
    TableForm[Table[q[i, k], {i, 0, 4}, {k, 0, i}]]
    Table[r[k], {k, 0, 8}]
    TableForm[Table[p[n, k], {n, 0, 4}, {k, 0, 4}]]

Formula

Conjecture: a(n) = 2*a(n-1) +3*a(n-2) -4*a(n-3) if n>3. - R. J. Mathar, Feb 19 2015

A127672 Monic integer version of Chebyshev T-polynomials (increasing powers).

Original entry on oeis.org

2, 0, 1, -2, 0, 1, 0, -3, 0, 1, 2, 0, -4, 0, 1, 0, 5, 0, -5, 0, 1, -2, 0, 9, 0, -6, 0, 1, 0, -7, 0, 14, 0, -7, 0, 1, 2, 0, -16, 0, 20, 0, -8, 0, 1, 0, 9, 0, -30, 0, 27, 0, -9, 0, 1, -2, 0, 25, 0, -50, 0, 35, 0, -10, 0, 1, 0, -11, 0, 55, 0, -77, 0, 44, 0, -11, 0, 1, 2, 0, -36, 0, 105, 0, -112, 0, 54, 0, -12, 0, 1, 0, 13, 0, -91
Offset: 0

Views

Author

Wolfdieter Lang, Mar 07 2007

Keywords

Comments

The row polynomials R(n,x) := Sum_{m=0..n} a(n,m)*x^m have been called Chebyshev C_n(x) polynomials in the Abramowitz-Stegun handbook, p. 778, 22.5.11 (see A049310 for the reference, and note that on p. 774 the S and C polynomials have been mixed up in older printings). - Wolfdieter Lang, Jun 03 2011
This is a signed version of triangle A114525.
The unsigned column sequences (without zeros) are, for m=1..11: A005408, A000290, A000330, A002415, A005585, A040977, A050486, A053347, A054333, A054334, A057788.
The row polynomials R(n,x) := Sum_{m=0..n} a(n,m)*x*m, give for n=2,3,...,floor(N/2) the positive zeros of the Chebyshev S(N-1,x)-polynomial (see A049310) in terms of its largest zero rho(N):= 2*cos(Pi/N) by putting x=rho(N). The order of the positive zeros is falling: n=1 corresponds to the largest zero rho(N) and n=floor(N/2) to the smallest positive zero. Example N=5: rho(5)=phi (golden section), R(2,phi)= phi^2-2 = phi-1, the second largest (and smallest) positive zero of S(4,x). - Wolfdieter Lang, Dec 01 2010
The row polynomial R(n,x), for n >= 1, factorizes into minimal polynomials of 2*cos(Pi/k), called C(k,x), with coefficients given in A187360, as follows.
R(n,x) = Product_{d|oddpart(n)} C(2*n/d,x)
= Product_{d|oddpart(n)} C(2^(k+1)*d,x),
with oddpart(n)=A000265(n), and 2^k is the largest power of 2 dividing n, where k=0,1,2,...
(Proof: R and C are monic, the degree on both sides coincides, and the zeros of R(n,x) appear all on the r.h.s.) - Wolfdieter Lang, Jul 31 2011 [Theorem 1B, eq. (43) in the W. Lang link. - Wolfdieter Lang, Apr 13 2018]
The zeros of the row polynomials R(n,x) are 2*cos(Pi*(2*k+1)/(2*n)), k=0,1, ..., n-1; n>=1 (from those of the Chebyshev T-polynomials). - Wolfdieter Lang, Sep 17 2011
The discriminants of the row polynomials R(n,x) are found under A193678. - Wolfdieter Lang, Aug 27 2011
The determinant of the N X N matrix M(N) with entries M(N;n,m) = R(m-1,x[n]), 1 <= n,m <= N, N>=1, and any x[n], is identical with twice the Vandermondian Det(V(N)) with matrix entries V(N;n,m) = x[n]^(m-1). This is an instance of the general theorem given in the Vein-Dale reference on p. 59. Note that R(0,x) = 2 (not 1). See also the comments from Aug 26 2013 under A049310 and from Aug 27 2013 under A000178. - Wolfdieter Lang, Aug 27 2013
This triangle a(n,m) is also used to express in the regular (2*(n+1))-gon, inscribed in a circle of radius R, the length ratio side/R, called s(2*(n+1)), as a polynomial in rho(2*(n+1)), the length ratio (smallest diagonal)/side. See the bisections ((-1)^(k-s))*A111125(k,s) and A127677 for comments and examples. - Wolfdieter Lang, Oct 05 2013
From Tom Copeland, Nov 08 2015: (Start)
These are the characteristic polynomials a_n(x) = 2*T_n(x/2) for the adjacency matrix of the Coxeter simple Lie algebra B_n, related to the Cheybshev polynomials of the first kind, T_n(x) = cos(n*q) with x = cos(q) (see p. 20 of Damianou). Given the polynomial (x - t)*(x - 1/t) = 1 - (t + 1/t)*x + x^2 = e2 - e1*x + x^2, the symmetric power sums p_n(t,1/t) = t^n + t^(-n) of the zeros of this polynomial may be expressed in terms of the elementary symmetric polynomials e1 = t + 1/t = y and e2 = t*1/t = 1 as p_n(t,1/t) = a_n(y) = F(n,-y,1,0,0,...), where F(n,b1,b2,...,bn) are the Faber polynomials of A263916.
The partial sum of the first n+1 rows given t and y = t + 1/t is PS(n,t) = Sum_{k=0..n} a_n(y) = (t^(n/2) + t^(-n/2))*(t^((n+1)/2) - t^(-(n+1)/2)) / (t^(1/2) - t^(-1/2)). (For n prime, this is related simply to the cyclotomic polynomials.)
Then a_n(y) = PS(n,t) - PS(n-1,t), and for t = e^(iq), y = 2*cos(q), and, therefore, a_n(2*cos(q)) = PS(n,e^(iq)) - PS(n-1,e^(iq)) = 2*cos(nq) = 2*T_n(cos(q)) with PS(n,e^(iq)) = 2*cos(nq/2)*sin((n+1)q/2) / sin(q/2).
(End)
R(45, x) is the famous polynomial used by Adriaan van Roomen (Adrianus Romanus) in his Ideae mathematicae from 1593 to pose four problems, solved by Viète. See, e.g., the Havil reference, pp. 69-74. - Wolfdieter Lang, Apr 28 2018
From Wolfdieter Lang, May 05 2018: (Start)
Some identities for the row polynomials R(n, x) following from the known ones for Chebyshev T-polynomials (A053120) are:
(1) R(-n, x) = R(n, x).
(2) R(n*m, x) = R(n, R(m, x)) = R(m, R(n, x)).
(3) R(2*k+1, x) = (-1)^k*x*S(2*k, sqrt(4-x^2)), k >= 0, with the S row polynomials of A049310.
(4) R(2*k, x) = R(k, x^2-2), k >= 0.
(End)
For y = z^n + z^(-n) and x = z + z^(-1), Hirzebruch notes that y(z) = R(n,x) for the row polynomial of this entry. - Tom Copeland, Nov 09 2019

Examples

			Row n=4: [2,0,-4,0,1] stands for the polynomial 2*y^0 - 4*y^2 + 1*y^4. With y^m replaced by 2^(m-1)*x^m this becomes T(4,x) = 1 - 8*x^2 + 8*x^4.
Triangle begins:
n\m   0   1   2   3   4   5   6   7   8   9  10 ...
0:    2
1:    0   1
2:   -2   0   1
3:    0  -3   0   1
4:    2   0  -4   0   1
5:    0   5   0  -5   0   1
6:   -2   0   9   0  -6   0   1
7:    0  -7   0  14   0  -7   0   1
8:    2   0 -16   0  20   0  -8   0   1
9:    0   9   0 -30   0  27   0  -9   0   1
10:  -2   0  25   0 -50   0  35   0 -10   0   1 ...
Factorization into minimal C-polynomials:
R(12,x) = R((2^2)*3,x) = C(24,x)*C(8,x) = C((2^3)*1,x)*C((2^3)*3,x). - _Wolfdieter Lang_, Jul 31 2011
		

References

  • Julian Havil, The Irrationals, A Story of the Numbers You Can't Count On, Princeton University Press, Princeton and Oxford, 2012, pp. 69-74.
  • F. Hirzebruch et al., Manifolds and Modular Forms, Vieweg 1994 pp. 77, 105.
  • R. Vein and P. Dale, Determinants and Their Applications in Mathematical Physics, Springer, 1999.

Crossrefs

Row sums (signed): A057079(n-1). Row sums (unsigned): A000032(n) (Lucas numbers). Alternating row sums: A099837(n+3).
Bisection: A127677 (even n triangle, without zero entries), ((-1)^(n-m))*A111125(n, m) (odd n triangle, without zero entries).

Programs

  • Maple
    seq(seq(coeff(2*orthopoly[T](n,x/2),x,j),j=0..n),n=0..20); # Robert Israel, Aug 04 2015
  • Mathematica
    a[n_, k_] := SeriesCoefficient[(2 - t*x)/(1 - t*x + x^2), {x, 0, n}, {t, 0, k}]; Flatten[Table[a[n, k], {n, 0, 12}, {k, 0, n}]] (* L. Edson Jeffery, Nov 02 2017 *)

Formula

a(n,0) = 0 if n is odd, a(n,0) = 2*(-1)^(n/2) if n is even, else a(n,m) = t(n,m)/2^(m-1) with t(n,m):=A053120(n,m) (coefficients of Chebyshev T-polynomials).
G.f. for m-th column (signed triangle): 2/(1+x^2) if m=0 else (x^m)*(1-x^2)/(1+x^2)^(m+1).
Riordan type matrix ((1-x^2)/(1+x^2),x/(1+x^2)) if one puts a(0,0)=1 (instead of 2).
O.g.f. for row polynomials: R(x,z) := Sum_{n>=0} R(n,x)*z^n = (2-x*z)*S(x,z), with the o.g.f. S(x,z) = 1/(1 - x*z + z^2) for the S-polynomials (see A049310).
Note that R(n,x) = R(2*n,sqrt(2+x)), n>=0 (from the o.g.f.s of both sides). - Wolfdieter Lang, Jun 03 2011
a(n,m) := 0 if n < m or n+m odd; a(n,0) = 2*(-1)^(n/2) (n even); else a(n,m) = ((-1)^((n+m)/2 + m))*n*binomial((n+m)/2-1,m-1)/m.
Recursion for n >= 2 and m >= 2: a(n,m) = a(n-1,m-1) - a(n-2,m), a(n,m) = 0 if n < m, a(2*k,1) = 0, a(2*k+1,1) = (2*k+1)*(-1)^k. In addition, for column m=0: a(2*k,0) = 2*(-1)^k, a(2*k+1,0) = 0, k>=0.
Chebyshev T(n,x) = Sum{m=0..n} a(n,m)*2^(m-1)*x^m. - Wolfdieter Lang, Jun 03 2011
R(n,x) = 2*T(n,x/2) = S(n,x) - S(n-2,x), n>=0, with Chebyshev's T- and S-polynomials, showing that they are integer and monic polynomials. - Wolfdieter Lang, Nov 08 2011
From Tom Copeland, Nov 08 2015: (Start)
a(n,x) = sqrt(2 + a(2n,x)), or 2 + a(2n,x) = a(n,x)^2, is a reflection of the relation of the Chebyshev polynomials of the first kind to the cosine and the half-angle formula, cos(q/2)^2 = (1 + cos(q))/2.
Examples: For n = 2, -2 + x^2 = sqrt(2 + 2 - 4*x^2 + x^4).
For n = 3, -3*x + x^3 = sqrt(2 - 2 + 9*x^2 - 6*x^4 + x^6).
(End)
L(x,h1,h2) = -log(1 - h1*x + h2*x^2) = Sum_{n>0} F(n,-h1,h2,0,...,0) x^n/n = h1*x + (-2*h2 + h1^2) x^2/2 + (-3*h1*h2 + h1^3) x^3/3 + ... is a log series generator of the bivariate row polynomials where T(0,0) = 0 and F(n,b1,b2,...,bn) are the Faber polynomials of A263916. exp(L(x,h1,h2)) = 1 / (1 - h1*x + h2*x^2) is the o.g.f. of A049310. - Tom Copeland, Feb 15 2016

Extensions

Name changed and table rewritten by Wolfdieter Lang, Nov 08 2011

A034807 Triangle T(n,k) of coefficients of Lucas (or Cardan) polynomials.

Original entry on oeis.org

2, 1, 1, 2, 1, 3, 1, 4, 2, 1, 5, 5, 1, 6, 9, 2, 1, 7, 14, 7, 1, 8, 20, 16, 2, 1, 9, 27, 30, 9, 1, 10, 35, 50, 25, 2, 1, 11, 44, 77, 55, 11, 1, 12, 54, 112, 105, 36, 2, 1, 13, 65, 156, 182, 91, 13, 1, 14, 77, 210, 294, 196, 49, 2, 1, 15, 90, 275, 450, 378, 140, 15, 1, 16, 104
Offset: 0

Views

Author

Keywords

Comments

These polynomials arise in the following setup. Suppose G and H are power series satisfying G + H = G*H = 1/x. Then G^n + H^n = (1/x^n)*L_n(-x).
Apart from signs, triangle of coefficients when 2*cos(nt) is expanded in terms of x = 2*cos(t). For example, 2*cos(2t) = x^2 - 2, 2*cos(3t) = x^3 - 3x and 2*cos(4t) = x^4 - 4x^2 + 2. - Anthony C Robin, Jun 02 2004
Triangle of coefficients of expansion of Z_{nk} in terms of Z_k.
Row n has 1 + floor(n/2) terms. - Emeric Deutsch, Dec 25 2004
T(n,k) = number of k-matchings of the cycle C_n (n > 1). Example: T(6,2)=9 because the 2-matchings of the hexagon with edges a, b, c, d, e, f are ac, ad, ae, bd, be, bf, ce, cf and df. - Emeric Deutsch, Dec 25 2004
An example for the first comment: G=c(x), H=1/(x*c(x)) with c(x) the o.g.f. Catalan numbers A000108: (x*c(x))^n + (1/c(x))^n = L(n,-x)= Sum_{k=0..floor(n/2)} T(n,k)*(-x)^k.
This triangle also supplies the absolute values of the coefficients in the multiplication formulas for the Lucas numbers A000032.
From L. Edson Jeffery, Mar 19 2011: (Start)
This sequence is related to rhombus substitution tilings. A signed version of it (see A132460), formed as a triangle with interlaced zeros extending each row to n terms, begins as
{2}
{1, 0}
{1, 0, -2}
{1, 0, -3, 0}
{1, 0, -4, 0, 2}
{1, 0, -5, 0, 5, 0}
....
For the n X n tridiagonal unit-primitive matrix G_(n,1) (n >= 2) (see the L. E. Jeffery link below), defined by
G_(n,1) =
(0 1 0 ... 0)
(1 0 1 0 ... 0)
(0 1 0 1 0 ... 0)
...
(0 ... 0 1 0 1)
(0 ... 0 2 0),
Row n (i.e., {T(n,k)}, k=0..n) of the signed table gives the coefficients of its characteristic function: c_n(x) = Sum_{k=0..n} T(n,k)*x^(n-k) = 0. For example, let n=3. Then
G_(3,1) =
(0 1 0)
(1 0 1)
(0 2 0),
and row 3 of the table is {1,0,-3,0}. Hence c_3(x) = x^3 - 3*x = 0. G_(n,1) has n distinct eigenvalues (the solutions of c_n(x) = 0), given by w_j = 2*cos((2*j-1)*Pi/(2*n)), j=1..n. (End)
For n > 0, T(n,k) is the number of k-subsets of {1,2,...,n} which contain neither consecutive integers nor both 1 and n. Equivalently, T(n,k) is the number of k-subsets without neighbors of a set of n points on a circle. - José H. Nieto S., Jan 17 2012
With the first column omitted, this gives A157000. - Philippe Deléham, Mar 17 2013
The number of necklaces of k black and n - k white beads with no adjacent black beads (Kaplansky 1943). Coefficients of the Dickson polynomials D(n,x,-a). - Peter Bala, Mar 09 2014
From Tom Copeland, Nov 07 2015: (Start)
This triangular array is composed of interleaved rows of reversed, unsigned A127677 (cf. A156308, A217476, A263916) and reversed A111125 (cf. A127672).
See also A113279 for another connection to symmetric and Faber polynomials.
The difference of consecutive rows gives the previous row shifted.
For relations among the characteristic polynomials of Cartan matrices of the Coxeter root groups, Chebyshev polynomials, cyclotomic polynomials, and the polynomials of this entry, see Damianou (p. 12, 20, and 21) and Damianou and Evripidou (p. 7). (End)
Diagonals are related to multiplicities of eigenvalues of the Laplacian on hyperspheres through A029635. - Tom Copeland, Jan 10 2016
For n>=3, also the independence and matching polynomials of the n-cycle graph C_n. See also A284966. - Eric W. Weisstein, Apr 06 2017
Apparently, with the rows aerated and then the 2s on the diagonal removed, this matrix becomes the reverse, or mirror, of unsigned A117179. See also A114525 - Tom Copeland, May 30 2017
Briggs's (1633) table with an additional column of 2s on the right can be used to generate this table. See p. 69 of the Newton reference. - Tom Copeland, Jun 03 2017
From Liam Solus, Aug 23 2018: (Start)
For n>3 and k>0, T(n,k) equals the number of Markov equivalence classes with skeleton the cycle on n nodes having exactly k immoralities. See Theorem 2.1 of the article by A. Radhakrishnan et al. below.
For n>2 odd and r = floor(n/2)-1, the n-th row is the coefficient vector of the Ehrhart h*-polynomial of the r-stable (n,2)-hypersimplex. See Theorem 4.14 in the article by B. Braun and L. Solus below.
(End)
Conjecture: If a(n) = H(a,b,c,d,n) is a second-order linear recurrence with constant coefficients defined as a(0) = a, a(1)= b, a(n) = c*a(n-1) + d*a(n-2) then a(m*n) = H(a, H(a,b,c,d,m), Sum_{k=0..floor(m/2)} T(m,k)*c^(m-2*k)*d^k, (-1)^(m+1)*d^m, n) (Wolfdieter Lang). - Gary Detlefs, Feb 06 2023
For the proof of the preceding conjecture see the Detlefs and Lang link. There also proofs for several properties of this table are found. - Wolfdieter Lang, Apr 25 2023
From Mohammed Yaseen, Nov 09 2024: (Start)
Let m - 1/m = x, then
m^2 + 1/m^2 = x^2 + 2,
m^3 - 1/m^3 = x^3 + 3*x,
m^4 + 1/m^4 = x^4 + 4*x^2 + 2,
m^5 - 1/m^5 = x^5 + 5*x^3 + 5*x,
m^6 + 1/m^6 = x^6 + 6*x^4 + 9*x^2 + 2,
m^7 - 1/m^7 = x^7 + 7*x^5 + 14*x^3 + 7*x, etc. (End)

Examples

			I have seen two versions of these polynomials: One version begins L_0 = 2, L_1 = 1, L_2 = 1 + 2*x, L_3 = 1 + 3*x, L_4 = 1 + 4*x + 2*x^2, L_5 = 1 + 5*x + 5*x^2, L_6 = 1 + 6*x + 9*x^2 + 2*x^3, L_7 = 1 + 7*x + 14*x^2 + 7*x^3, L_8 = 1 + 8*x + 20*x^2 + 16*x^3 + 2*x^4, L_9 = 1 + 9*x + 27*x^2 + 30*x^3 + 9*x^4, ...
The other version (probably the more official one) begins L_0(x) = 2, L_1(x) = x, L_2(x) = 2 + x^2, L_3(x) = 3*x + x^3, L_4(x) = 2 + 4*x^2 + x^4, L_5(x) = 5*x + 5*x^3 + x^5, L_6(x) = 2 + 9*x^2 + 6*x^4 + x^6, L_7(x) = 7*x + 14*x^3 + 7*x^5 + x^7, L_8(x) = 2 + 16*x^2 + 20*x^4 + 8*x^6 + x^8, L_9(x) = 9*x + 30*x^3 + 27*x^5 + 9*x^7 + x^9.
From _John Blythe Dobson_, Oct 11 2007: (Start)
Triangle begins:
  2;
  1;
  1,  2;
  1,  3;
  1,  4,  2;
  1,  5,  5;
  1,  6,  9,   2;
  1,  7, 14,   7;
  1,  8, 20,  16,   2;
  1,  9, 27,  30,   9;
  1, 10, 35,  50,  25,   2;
  1, 11, 44,  77,  55,  11;
  1, 12, 54, 112, 105,  36,   2;
  1, 13, 65, 156, 182,  91,  13;
  1, 14, 77, 210, 294, 196,  49,  2;
  1, 15, 90, 275, 450, 378, 140, 15;
(End)
From _Peter Bala_, Mar 20 2025: (Start)
Let S = x + y and M = -x*y. Then the triangle gives the coefficients when expressing the symmetric polynomial x^n + y^n as a polynomial in S and M. For example,
x^2 + y^2 = S^2 + 2*M; x^3 + y^3 = S^3 + 3*S*M; x^4 + y^4 = S^4 + 4*(S^2)*M + 2*M^2;
x^5 + y^5 = S^5 + 5*(S^3)*M + 5*S*M^2; x^6 + y^6 = S^6 + 6*(S^4)*M + 9*(S^2)*M^2 + 2*M^3. See Woko. In general x^n + y^n = 2*(-i)^n *(sqrt(M))^n * T(n, i*S/(2*sqrt(M))), where T(n, x) denotes the n-th Chebyshev polynomial of the first kind. (End)
		

References

  • A. Brousseau, Fibonacci and Related Number Theoretic Tables. Fibonacci Association, San Jose, CA, 1972, p. 148.
  • C. D. Godsil, Algebraic Combinatorics, Chapman and Hall, New York, 1993.
  • Thomas Koshy, Fibonacci and Lucas Numbers with Applications. New York, etc.: John Wiley & Sons, 2001. (Chapter 13, "Pascal-like Triangles," is devoted to the present triangle.)
  • The Royal Society Newton Tercentenary Celebrations, Cambridge Univ. Press, 1947.

Crossrefs

Programs

  • Maple
    T:= proc(n,k) if n=0 and k=0 then 2 elif k>floor(n/2) then 0 else n*binomial(n-k,k)/(n-k) fi end: for n from 0 to 15 do seq(T(n,k), k=0..floor(n/2)) od; # yields sequence in triangular form # Emeric Deutsch, Dec 25 2004
  • Mathematica
    t[0, 0] = 2; t[n_, k_] := Binomial[n-k, k] + Binomial[n-k-1, k-1]; Table[t[n, k], {n, 0, 16}, {k, 0, Floor[n/2]}] // Flatten (* Jean-François Alcover, Dec 30 2013 *)
    CoefficientList[Table[x^(n/2) LucasL[n, 1/Sqrt[x]], {n, 0, 15}], x] // Flatten (* Eric W. Weisstein, Apr 06 2017 *)
    Table[Select[Reverse[CoefficientList[LucasL[n, x], x]], 0 < # &], {n, 0, 16}] // Flatten (* Robert G. Wilson v, May 03 2017 *)
    CoefficientList[FunctionExpand @ Table[2 (-x)^(n/2) Cos[n ArcSec[2 Sqrt[-x]]], {n, 0, 15}], x] // Flatten (* Eric W. Weisstein, Apr 03 2018 *)
    CoefficientList[Table[2 (-x)^(n/2) ChebyshevT[n, 1/(2 Sqrt[-x])], {n, 0, 15}], x] // Flatten (* Eric W. Weisstein, Apr 03 2018 *)
  • PARI
    {T(n, k) = if( k<0 || 2*k>n, 0, binomial(n-k, k) + binomial(n-k-1, k-1) + (n==0))}; /* Michael Somos, Jul 15 2003 */

Formula

Row sums = A000032. T(2n, n-1) = A000290(n), T(2n+1, n-1) = A000330(n), T(2n, n-2) = A002415(n). T(n, k) = A029635(n-k, k), if n>0. - Michael Somos, Apr 02 1999
Lucas polynomial coefficients: 1, -n, n*(n-3)/2!, -n*(n-4)*(n-5)/3!, n*(n-5)*(n-6)*(n-7)/4!, - n*(n-6)*(n-7)*(n-8)*(n-9)/5!, ... - Herb Conn and Gary W. Adamson, May 28 2003
G.f.: (2-x)/(1-x-x^2*y). - Vladeta Jovovic, May 31 2003
T(n, k) = T(n-1, k) + T(n-2, k-1), n>1. T(n, 0) = 1, n>0. T(n, k) = binomial(n-k, k) + binomial(n-k-1, k-1) = n*binomial(n-k-1, k-1)/k, 0 <= 2*k <= n except T(0, 0) = 2. - Michael Somos, Apr 02 1999
T(n,k) = (n*(n-1-k)!)/(k!*(n-2*k)!), n>0, k>=0. - Alexander Elkins (alexander_elkins(AT)hotmail.com), Jun 09 2007
O.g.f.: 2-(2xt+1)xt/(-t+xt+(xt)^2). (Cf. A113279.) - Tom Copeland, Nov 07 2015
T(n,k) = A011973(n-1,k) + A011973(n-3,k-1) = A011973(n,k) - A011973(n-4,k-2) except for T(0,0)=T(2,1)=2. - Xiangyu Chen, Dec 24 2020
L_n(x) = ((x+sqrt(x^2+4))/2)^n + (-((x+sqrt(x^2+4))/2))^(-n). See metallic means. - William Krier, Sep 01 2023

Extensions

Improved description, more terms, etc., from Michael Somos

A048898 One of the two successive approximations up to 5^n for the 5-adic integer sqrt(-1).

Original entry on oeis.org

0, 2, 7, 57, 182, 2057, 14557, 45807, 280182, 280182, 6139557, 25670807, 123327057, 123327057, 5006139557, 11109655182, 102662389557, 407838170807, 3459595983307, 3459595983307, 79753541295807, 365855836217682, 2273204469030182, 2273204469030182, 49956920289342682
Offset: 0

Views

Author

Michael Somos, Jul 26 1999

Keywords

Comments

This is the root congruent to 2 mod 5.
Or, residues modulo 5^n of a 5-adic solution of x^2+1=0.
The radix-5 expansion of a(n) is obtained from the n rightmost digits in the expansion of the following pentadic integer:
...422331102414131141421404340423140223032431212 = u
The residues modulo 5^n of the other 5-adic solution of x^2+1=0 are given by A048899 which corresponds to the pentadic integer -u:
...022113342030313303023040104021304221412013233 = -u
The digits of u and -u are given in A210850 and A210851, respectively. - Wolfdieter Lang, May 02 2012
For approximations for p-adic square roots see also the W. Lang link under A268922. - Wolfdieter Lang, Apr 03 2016
From Jianing Song, Sep 06 2022: (Start)
For n > 0, a(n)-1 is one of the four solutions to x^4 == -4 (mod 5^n), the one that is congruent to 1 modulo 5.
For n > 0, a(n)+1 is one of the four solutions to x^4 == -4 (mod 5^n), the one that is congruent to 3 modulo 5. (End)

Examples

			a(0)=0 because 0 satisfies any equation in integers modulo 1.
a(1)=2 because 2 is one solution of x^2+1=0 modulo 5. (The other solution is 3, which gives rise to A048899.)
a(2)=7 because the equation (5y+a(1))^2+1=0 modulo 25 means that y is 1 modulo 5.
		

References

  • J. H. Conway, The Sensual Quadratic Form, p. 118, Mathematical Association of America, 1997, The Carus Mathematical Monographs, Number 26.
  • K. Mahler, Introduction to p-Adic Numbers and Their Functions, Cambridge, 1973, p. 35.

Crossrefs

The two successive approximations up to p^n for p-adic integer sqrt(-1): this sequence and A048899 (p=5), A286840 and A286841 (p=13), A286877 and A286878 (p=17).
Cf. A000351 (powers of 5), A034939(n) = Min(a(n), A048899(n)).
Different from A034935.

Programs

  • Magma
    [n le 2 select 2*(n-1) else Self(n-1)^5 mod 5^(n-1): n in [1..30]]; // Vincenzo Librandi, Feb 29 2016
  • Mathematica
    a[0] = 0; a[1] = 2; a[n_] := a[n] = Mod[a[n-1]^5, 5^n]; Table[a[n], {n, 0, 21}] (* Jean-François Alcover, Nov 24 2011, after PARI *)
    Join[{0}, RecurrenceTable[{a[1] == 2, a[n] == Mod[a[n-1]^5, 5^n]}, a, {n, 25}]] (* Vincenzo Librandi, Feb 29 2016 *)
  • PARI
    {a(n) = if( n<2, 2, a(n-1)^5) % 5^n}
    
  • PARI
    a(n) = lift(sqrt(-1 + O(5^n))); \\ Kevin Ryde, Dec 22 2020
    

Formula

If n>0, a(n) = 5^n - A048899(n).
From Wolfdieter Lang, Apr 28 2012: (Start)
Recurrence: a(n) = a(n-1)^5 (mod 5^n), a(1) = 2, n>=2. See the J.-F. Alcover Mathematica program and the PARI program below.
a(n) == 2^(5^(n-1)) (mod 5^n), n>=1.
a(n)*a(n-1) + 1 == 0 (mod 5^(n-1)), n>=1.
(a(n)^2 + 1)/5^n = A210848(n), n>=0.
(End)
Another recurrence: a(n) = modp(a(n-1) + a(n-1)^2 + 1, 5^n), n >= 2, a(1) = 2. Here modp(a, m) is the representative from {0, 1, ..., |m|-1} of the residue class a modulo m. Note that a(n) is in the residue class of a(n-1) modulo 5^(n-1) (see Hensel lifting). - Wolfdieter Lang, Feb 28 2016
a(n) == L(5^n,2) (mod 5^n), where L(n,x) denotes the n-th Lucas polynomial of A114525. - Peter Bala, Nov 20 2022

Extensions

Additional comments from Gerard P. Michon, Jul 15 2009
Edited by N. J. A. Sloane, Jul 25 2009
Name clarified by Wolfdieter Lang, Feb 19 2016

A048899 One of the two successive approximations up to 5^n for 5-adic integer sqrt(-1).

Original entry on oeis.org

0, 3, 18, 68, 443, 1068, 1068, 32318, 110443, 1672943, 3626068, 23157318, 120813568, 1097376068, 1097376068, 19407922943, 49925501068, 355101282318, 355101282318, 15613890344818, 15613890344818, 110981321985443, 110981321985443, 9647724486047943, 9647724486047943
Offset: 0

Views

Author

Michael Somos, Jul 26 1999

Keywords

Comments

This is the root congruent to 3 (mod 5) for n>0.
The other case with the 2 (mod 5) numbers (except for n=0) is given in A048898. - Wolfdieter Lang, Feb 19 2016
From Jianing Song, Sep 06 2022: (Start)
For n > 0, a(n)-1 is one of the four solutions to x^4 == -4 (mod 5^n), the one that is congruent to 2 modulo 5.
For n > 0, a(n)+1 is one of the four solutions to x^4 == -4 (mod 5^n), the one that is congruent to 4 modulo 5. (End)

Examples

			a(2) = 18 because the two roots of x^2 + 1 == 0 (mod 5^2) are 7 and 18 and 18 == 3 (mod 5). For 7 see A048898(2).
		

References

  • J. H. Conway, The Sensual Quadratic Form, p. 118, Mathematical Association of America, 1997, The Carus Mathematical Monographs, Number 26.
  • K. Mahler, Introduction to p-Adic Numbers and Their Functions, Cambridge, 1973, p. 35.

Crossrefs

Programs

  • Magma
    [n le 2 select 3*(n-1) else Self(n-1)^5 mod 5^(n-1): n in [1..30]]; // Vincenzo Librandi, Feb 29 2016
  • Mathematica
    Join[{0}, RecurrenceTable[{a[1] == 3, a[n] == Mod[a[n-1]^5, 5^n]}, a, {n, 25}]] (* Vincenzo Librandi, Feb 29 2016 *)
  • PARI
    {a(n) = if( n<2, 3, a(n - 1)^5) % 5^n}
    
  • PARI
    a(n) = lift(-sqrt(-1 + O(5^n))); \\ Kevin Ryde, Dec 22 2020
    

Formula

a(n) = 5^n - A048898(n), n>=1.
a(n) = A066601(5^n), n>=0.
0 <= a(n) < 5^n. 5^n divides a(n)^2 + 1.
From Wolfdieter Lang, Apr 28 2012: (Start)
Recurrence: a(n) = a(n-1)^5 (mod 5^n), a(1) = 3, n>=2. See the Pari program below, and the J.- F. Alcover Mathematica program for A048898.
a(n) = 3^(5^(n-1)) (mod 5^n), n>=1. Compare with the above given formula involving A066601.
a(n)*a(n-1) + 1 == 0 (mod 5^(n-1)), n>=1.
(a(n)^2 + 1)/5^n = A210849(n), n>=0.
(End)
Another recurrence: a(n) = modp(a(n-1) + 4*(a(n-1)^2 + 1), 5^n), n >= 2, a(1) = 3. Here modp(a, m) is the representative from {0, 1, ... ,|m|-1} of the residue class a modulo m. Note that a(n) is in the residue class of a(n-1) modulo 5^(n-1) (see Hensel lifting). - Wolfdieter Lang, Feb 28 2016
a(n) == L(5^n,3) (mod 5^n), where L(n,x) denotes the n-th Lucas polynomial of A114525. - Peter Bala, Nov 20 2022

Extensions

Example corrected by Wolfdieter Lang, Apr 28 2012
Name clarified by Wolfdieter Lang, Feb 19 2016

A210850 Digits of one of the two 5-adic integers sqrt(-1).

Original entry on oeis.org

2, 1, 2, 1, 3, 4, 2, 3, 0, 3, 2, 2, 0, 4, 1, 3, 2, 4, 0, 4, 3, 4, 0, 4, 1, 2, 4, 1, 4, 1, 1, 3, 1, 4, 1, 4, 2, 0, 1, 1, 3, 3, 2, 2, 4, 0, 4, 2, 4, 0, 3, 1, 2, 4, 0, 3, 3, 0, 3, 0, 0, 0, 3, 1, 3, 1, 1, 0, 3, 0, 0, 3, 4, 1, 3, 3, 3, 4, 0, 2, 2, 0, 2, 0, 1, 0, 4, 1, 1, 4, 4, 2, 1, 0, 2, 0, 0, 3, 0, 4
Offset: 0

Views

Author

Wolfdieter Lang, Apr 30 2012

Keywords

Comments

See A048898 for the successive approximations to this 5-adic integer, called there u.
The digits of -u, the other 5-adic integer sqrt(-1), are given in A210851.
a(n) is the unique solution of the linear congruence 2*A048898(n)*a(n) + A210848(n) == 0 (mod 5), n>=1. Therefore only the values 0, 1, 2, 3 and 4 appear. See the Nagell reference given in A210848, eq. (6) on p. 86 adapted to this case. a(0)=2 follows from the formula given below.
If n>0, a(n) == A210848(n) (mod 5), since A048898(n) == 2 (mod 5). - Álvar Ibeas, Feb 21 2017
If a(n)=0 then A048899(n+1) and A048899(n) coincide.
a(n) + A210851(n) = 4 for n >= 1. - Robert Israel, Mar 04 2016
From Jianing Song, Sep 06 2022: (Start)
With a(0) = 1, this is the digits of one of the four 4th root of -4 in the ring of 5-adic integers, the one that is congruent to 1 modulo 5.
With a(0) = 3, this is the digits of one of the four 4th root of -4 in the ring of 5-adic integers, the one that is congruent to 3 modulo 5. (End)
This square root of -1 in the 5-adic integers is equal to the 5-adic limit of the sequence {L(5^n,2)}, where L(n,x) denotes the n-th Lucas polynomial, the n-th row polynomial of A114525. - Peter Bala, Dec 02 2022

Examples

			a(4) = 3 because 2*182*3 + 53 = 1145 == 0 (mod 5).
A048898(5) = 2057 = 2*5^0 + 1*5^1 + 2*5^2 + 1*5^3 + 3*5^4.
a(8) = 0, therefore A048898(9) = A048898(8) = Sum_{k=0..7} a(k)*5^k = 280182.
		

Crossrefs

Programs

  • Maple
    R:= select(t -> padic:-ratvaluep(t,1)=2,[padic:-rootp(x^2+1,5,10001)]):
    op([1,1,3],R); # Robert Israel, Mar 04 2016
  • Mathematica
    Table[Floor[First@Select[PowerModList[-1,1/2,5^(k+1)],Mod[#,5]==2&]/5^k],{k,0,99}] (* Giorgos Kalogeropoulos, Feb 28 2023 *)
  • PARI
    a(n) = truncate(sqrt(-1+O(5^(n+1))))\5^n; \\ Michel Marcus, Mar 05 2016

Formula

a(n) = (b(n+1) - b(n))/5^n, n >= 0, with b(n):=A048898(n) computed from its recurrence. A Maple program for b(n) is given there.
A048898(n+1) = Sum_{k=0..n} a(k)*5^k, n >= 0.

Extensions

Keyword "base" added by Jianing Song, Feb 17 2021

A210851 Digits of one of the two 5-adic integers sqrt(-1).

Original entry on oeis.org

3, 3, 2, 3, 1, 0, 2, 1, 4, 1, 2, 2, 4, 0, 3, 1, 2, 0, 4, 0, 1, 0, 4, 0, 3, 2, 0, 3, 0, 3, 3, 1, 3, 0, 3, 0, 2, 4, 3, 3, 1, 1, 2, 2, 0, 4, 0, 2, 0, 4, 1, 3, 2, 0, 4, 1, 1, 4, 1, 4, 4, 4, 1, 3, 1, 3, 3, 4, 1, 4, 4, 1, 0, 3, 1, 1, 1, 0, 4, 2, 2, 4, 2, 4, 3, 4, 0, 3, 3, 0, 0, 2, 3, 4, 2, 4, 4, 1, 4, 0
Offset: 0

Views

Author

Wolfdieter Lang, Apr 30 2012

Keywords

Comments

See A048899 for the successive approximations to this 5-adic integer, called -u in a comment on A048898.
The digits of u, the other 5-adic integer sqrt(-1), are given in A210850.
a(n) is the (unique) solution of the linear congruence 2*A048899(n)*a(n) + A210849(n) == 0 (mod 5), n >= 1. Therefore only the values 0, 1, 2, 3 and 4 appear. See the Nagell reference given in A210848, eq. (6) on p. 86 adapted to this case. a(0)=3 follows from the formula given below.
If n>0, a(n) == -(A210849(n)) (mod 5), since A048899(n) == 3 (mod 5). - Álvar Ibeas, Feb 21 2017
If a(n)=0 then A048899(n+1) and A048899(n) coincide.
From Jianing Song, Sep 06 2022: (Start)
With a(0) = 2, this is the digits of one of the four 4th root of -4 in the ring of 5-adic integers, the one that is congruent to 2 modulo 5.
With a(0) = 4, this is the digits of one of the four 4th root of -4 in the ring of 5-adic integers, the one that is congruent to 4 modulo 5. (End)
This square root of -1 in the 5-adic integers is equal to the 5-adic limit of the sequence {L(5^n,3)}, where L(n,x) denotes the n-th Lucas polynomial, the n-th row polynomial of A114525. - Peter Bala, Dec 02 2022

Examples

			a(3) = 3 because 2*68*3 + 37 == 0 (mod 5).
A048899(4) = 443 = 3*5^0 + 3*5^1 + 2*5^2 + 3*5^3.
a(5) = 0 because A048899(6) = A048899(5) = 3*5^0 + 3*5^1 + 2*5^2 + 3*5^3 + 1*5^4 = 1068.
		

Crossrefs

Programs

  • Maple
    R:= select(t -> padic:-ratvaluep(t,1)=3,[padic:-rootp(x^2+1,5,200)]):
    op([1,1,3],R); # Robert Israel, Mar 04 2016
  • Mathematica
    Join[{3}, MapIndexed[#/5^#2[[1]] &, Differences[FoldList[PowerMod[#, 5, 5^#2] &, 3, Range[2, 100]]]]] (* Paolo Xausa, Jan 15 2025 *)
  • PARI
    a(n) = truncate(-sqrt(-1+O(5^(n+1))))\5^n; \\ Michel Marcus, Mar 05 2016

Formula

a(n) = (b(n+1) - b(n))/5^n, n >= 0, with b(n):=A048899(n) computed from its recurrence. A Maple program for b(n) is given there.
A048899(n+1) = Sum_{k=0..n} a(k)*5^k, n >= 0.

Extensions

Keyword "base" added by Jianing Song, Feb 17 2021

A193649 Q-residue of the (n+1)st Fibonacci polynomial, where Q is the triangular array (t(i,j)) given by t(i,j)=1. (See Comments.)

Original entry on oeis.org

1, 1, 3, 5, 15, 33, 91, 221, 583, 1465, 3795, 9653, 24831, 63441, 162763, 416525, 1067575, 2733673, 7003971, 17938661, 45954543, 117709185, 301527355, 772364093, 1978473511
Offset: 0

Views

Author

Clark Kimberling, Aug 02 2011

Keywords

Comments

Suppose that p=p(0)*x^n+p(1)*x^(n-1)+...+p(n-1)*x+p(n) is a polynomial of positive degree and that Q is a sequence of polynomials: q(k,x)=t(k,0)*x^k+t(k,1)*x^(k-1)+...+t(k,k-1)*x+t(k,k), for k=0,1,2,... The Q-downstep of p is the polynomial given by D(p)=p(0)*q(n-1,x)+p(1)*q(n-2,x)+...+p(n-1)*q(0,x)+p(n).
Since degree(D(p))
Example: let p(x)=2*x^3+3*x^2+4*x+5 and q(k,x)=(x+1)^k.
D(p)=2(x+1)^2+3(x+1)+4(1)+5=2x^2+7x+14
D(D(p))=2(x+1)+7(1)+14=2x+23
D(D(D(p)))=2(1)+23=25;
the Q-residue of p is 25.
We may regard the sequence Q of polynomials as the triangular array formed by coefficients:
t(0,0)
t(1,0)....t(1,1)
t(2,0)....t(2,1)....t(2,2)
t(3,0)....t(3,1)....t(3,2)....t(3,3)
and regard p as the vector (p(0),p(1),...,p(n)). If P is a sequence of polynomials [or triangular array having (row n)=(p(0),p(1),...,p(n))], then the Q-residues of the polynomials form a numerical sequence.
Following are examples in which Q is the triangle given by t(i,j)=1 for 0<=i<=j:
Q.....P...................Q-residue of P
1.....1...................A000079, 2^n
1....(x+1)^n..............A007051, (1+3^n)/2
1....(x+2)^n..............A034478, (1+5^n)/2
1....(x+3)^n..............A034494, (1+7^n)/2
1....(2x+1)^n.............A007582
1....(3x+1)^n.............A081186
1....(2x+3)^n.............A081342
1....(3x+2)^n.............A081336
1.....A040310.............A193649
1....(x+1)^n+(x-1)^n)/2...A122983
1....(x+2)(x+1)^(n-1).....A057198
1....(1,2,3,4,...,n)......A002064
1....(1,1,2,3,4,...,n)....A048495
1....(n,n+1,...,2n).......A087323
1....(n+1,n+2,...,2n+1)...A099035
1....p(n,k)=(2^(n-k))*3^k.A085350
1....p(n,k)=(3^(n-k))*2^k.A090040
1....A008288 (Delannoy)...A193653
1....A054142..............A101265
1....cyclotomic...........A193650
1....(x+1)(x+2)...(x+n)...A193651
1....A114525..............A193662
More examples:
Q...........P.............Q-residue of P
(x+1)^n...(x+1)^n.........A000110, Bell numbers
(x+1)^n...(x+2)^n.........A126390
(x+2)^n...(x+1)^n.........A028361
(x+2)^n...(x+2)^n.........A126443
(x+1)^n.....1.............A005001
(x+2)^n.....1.............A193660
A094727.....1.............A193657
(k+1).....(k+1)...........A001906 (even-ind. Fib. nos.)
(k+1).....(x+1)^n.........A112091
(x+1)^n...(k+1)...........A029761
(k+1)......A049310........A193663
(In these last four, (k+1) represents the triangle t(n,k)=k+1, 0<=k<=n.)
A051162...(x+1)^n.........A193658
A094727...(x+1)^n.........A193659
A049310...(x+1)^n.........A193664
Changing the notation slightly leads to the Mathematica program below and the following formulation for the Q-downstep of p: first, write t(n,k) as q(n,k). Define r(k)=Sum{q(k-1,i)*r(k-1-i) : i=0,1,...,k-1} Then row n of D(p) is given by v(n)=Sum{p(n,k)*r(n-k) : k=0,1,...,n}.

Examples

			First five rows of Q, coefficients of Fibonacci polynomials (A049310):
1
1...0
1...0...1
1...0...2...0
1...0...3...0...1
To obtain a(4)=15, downstep four times:
D(x^4+3*x^2+1)=(x^3+x^2+x+1)+3(x+1)+1: (1,1,4,5) [coefficients]
DD(x^4+3*x^2+1)=D(1,1,4,5)=(1,2,11)
DDD(x^4+3*x^2+1)=D(1,2,11)=(1,14)
DDDD(x^4+3*x^2+1)=D(1,14)=15.
		

Crossrefs

Cf. A192872 (polynomial reduction), A193091 (polynomial augmentation), A193722 (the upstep operation and fusion of polynomial sequences or triangular arrays).

Programs

  • Mathematica
    q[n_, k_] := 1;
    r[0] = 1; r[k_] := Sum[q[k - 1, i] r[k - 1 - i], {i, 0, k - 1}];
    f[n_, x_] := Fibonacci[n + 1, x];
    p[n_, k_] := Coefficient[f[n, x], x, k]; (* A049310 *)
    v[n_] := Sum[p[n, k] r[n - k], {k, 0, n}]
    Table[v[n], {n, 0, 24}]    (* A193649 *)
    TableForm[Table[q[i, k], {i, 0, 4}, {k, 0, i}]]
    Table[r[k], {k, 0, 8}]  (* 2^k *)
    TableForm[Table[p[n, k], {n, 0, 6}, {k, 0, n}]]

Formula

Conjecture: G.f.: -(1+x)*(2*x-1) / ( (x-1)*(4*x^2+x-1) ). - R. J. Mathar, Feb 19 2015

A006266 A continued cotangent.

Original entry on oeis.org

2, 14, 2786, 21624372014, 10111847525912679844192131854786, 1033930953043290626825587838528711318150300040875029341893199068078185510802565166824630504014
Offset: 0

Keywords

Comments

The next (6th) term is 280 digits long. - M. F. Hasler, Oct 06 2014

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Programs

  • Magma
    [Evaluate(DicksonFirst(3^n, -1), 2): n in [0..7]]; // G. C. Greubel, Mar 25 2022
    
  • Maple
    a := proc(n) option remember; if n = 1 then 14 else a(n-1)^3 + 3*a(n-1) end if; end: seq(a(n), n = 1..5); # Peter Bala Nov 15 2022
  • Mathematica
    Table[Round[(1+Sqrt[2])^(3^n)],{n,0,10}] (* Artur Jasinski, Sep 24 2008 *)
    LucasL[3^Range[0, 7], 2] (* G. C. Greubel, Mar 25 2022 *)
  • PARI
    a(n,s=2)=for(i=2,n,s*=(s^2+3));s \\ M. F. Hasler, Oct 06 2014
    
  • Sage
    [lucas_number2(3^n,2,-1) for n in (0..7)] # G. C. Greubel, Mar 25 2022

Formula

From Artur Jasinski, Sep 24 2008: (Start)
a(n+1) = a(n)^3 + 3*a(n) with a(0) = 2.
a(n) = round((1+sqrt(2))^(3^n)). [Corrected by M. F. Hasler, Oct 06 2014] (End)
From Peter Bala, Nov 15 2022: (Start)
a(n) = A002203(3^n).
a(n) = L(3^n,2), where L(n,x) denotes the n-th Lucas polynomial of A114525.
a(n) == 2 (mod 3).
a(n+1) == a(n) (mod 3^(n+1)) for n >= 1 (a particular case of the Gauss congruences for the companion Pell numbers).
The smallest positive residue of a(n) mod(3^n) = A271222(n).
In the ring of 3-adic integers the limit_{n -> oo} a(n) exists and is equal to A271224. Cf. A006267. (End)

Extensions

Edited by M. F. Hasler, Oct 06 2014
Offset corrected by G. C. Greubel, Mar 25 2022

A090301 a(n) = 15*a(n-1) + a(n-2), starting with a(0) = 2 and a(1) = 15.

Original entry on oeis.org

2, 15, 227, 3420, 51527, 776325, 11696402, 176222355, 2655031727, 40001698260, 602680505627, 9080209282665, 136805819745602, 2061167505466695, 31054318401746027, 467875943531657100, 7049193471376602527
Offset: 0

Author

Nikolay V. Kosinov (kosinov(AT)unitron.com.ua), Jan 25 2004

Keywords

Comments

Lim_{n-> infinity} a(n)/a(n+1) = 0.066372... = 2/(15+sqrt(229)) = (sqrt(229)-15)/2.
Lim_{n-> infinity} a(n+1)/a(n) = 15.066372... = (15+sqrt(229))/2 = 2/(sqrt(229)-15).
For more information about this type of recurrence follow the Khovanova link and see A054413, A086902 and A178765. - Johannes W. Meijer, Jun 12 2010

Examples

			a(4) = 15*a(3) + a(2) = 15*3420 + 227 = ((15+sqrt(229))/2)^4 + ((15-sqrt(229))/2)^4 = 51526.9999805 + 0.0000194 = 51527.
		

Crossrefs

Lucas polynomials: A114525.
Lucas polynomials Lucas(n,m): A000032 (m=1), A002203 (m=2), A006497 (m=3), A014448 (m=4), A087130 (m=5), A085447 (m=6), A086902 (m=7), A086594 (m=8), A087798 (m=9), A086927 (m=10), A001946 (m=11), A086928 (m=12), A088316 (m=13), A090300 (m=14), this sequence (m=15), A090305 (m=16), A090306 (m=17), A090307 (m=18), A090308 (m=19), A090309 (m=20), A090310 (m=21), A090313 (m=22), A090314 (m=23), A090316 (m=24), A330767 (m=25), A087281 (m=29), A087287 (m=76), A089772 (m=199).

Programs

  • GAP
    m:=15;; a:=[2,m];; for n in [3..20] do a[n]:=m*a[n-1]+a[n-2]; od; a; # G. C. Greubel, Dec 31 2019
  • Magma
    m:=15; I:=[2,m]; [n le 2 select I[n] else m*Self(n-1) +Self(n-2): n in [1..20]]; // G. C. Greubel, Dec 31 2019
    
  • Maple
    seq(simplify(2*(-I)^n*ChebyshevT(n, 15*I/2)), n = 0..20); # G. C. Greubel, Dec 31 2019
  • Mathematica
    LucasL[Range[20]-1, 15] (* G. C. Greubel, Dec 31 2019 *)
  • PARI
    vector(21, n, 2*(-I)^(n-1)*polchebyshev(n-1, 1, 15*I/2) ) \\ G. C. Greubel, Dec 31 2019
    
  • Sage
    [2*(-I)^n*chebyshev_T(n, 15*I/2) for n in (0..20)] # G. C. Greubel, Dec 31 2019
    

Formula

a(n) = 15*a(n-1) + a(n-2), starting with a(0) = 2 and a(1) = 15.
a(n) = ((15+sqrt(229))/2)^n + ((15-sqrt(229))/2)^n.
(a(n))^2 = a(2n) - 2 if n=1, 3, 5...
(a(n))^2 = a(2n) + 2 if n=2, 4, 6...
G.f.: (2-15*x)/(1-15*x-x^2). - Philippe Deléham, Nov 02 2008
Contribution from Johannes W. Meijer, Jun 12 2010: (Start)
Lim_{k-> infinity} a(n+k)/a(k) = (A090301(n) + A154597(n)*sqrt(229))/2.
Lim_{n-> infinity} A090301(n)/ A154597(n) = sqrt(229).
a(2n+1) = 15*A098246(n).
a(3n+1) = A041426(5n), a(3n+2) = A041426(5n+3), a(3n+3) = 2*A041426(5n+4).
(End)
a(n) = Lucas(n, 15) = 2*(-i)^n * ChebyshevT(n, 15*i/2). - G. C. Greubel, Dec 31 2019
E.g.f.: 2*exp(15*x/2)*cosh(sqrt(229)*x/2). - Stefano Spezia, Jan 01 2020

Extensions

More terms from Ray Chandler, Feb 14 2004
Showing 1-10 of 29 results. Next