cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 17 results. Next

A006267 Continued cotangent for the golden ratio.

Original entry on oeis.org

1, 4, 76, 439204, 84722519070079276, 608130213374088941214747405817720942127490792974404
Offset: 0

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    a := proc(n) option remember; if n = 1 then 4 else a(n-1)^3 + 3*a(n-1) end if; end: seq(a(n), n = 1..5); # Peter Bala, Nov 15 2022
  • Mathematica
    c = N[GoldenRatio, 1000]; Table[Round[c^(3^n)], {n, 1, 8}] (* Artur Jasinski, Sep 22 2008 *)
    a = {}; x = 4; Do[AppendTo[a, x]; x = x^3 + 3 x, {n, 1, 10}]; a (* Artur Jasinski, Sep 24 2008 *)
  • PARI
    a(n)=fibonacci(3^n+1) + fibonacci(3^n-1) \\ Andrew Howroyd, Dec 30 2024
    
  • PARI
    a(n)={my(t=1); for(i=1, n, t = t^3 + 3*t); t} \\ Andrew Howroyd, Dec 30 2024

Formula

(1+sqrt(5))/2 = cot(Sum_{n>=0} (-1)^n*acot(a(n))); let b(0) = (1+sqrt(5))/2, b(n) = (b(n-1)*floor(b(n-1))+1)/(b(n-1)-floor(b(n-1))) then a(n) = floor(b(n)). - Benoit Cloitre, Apr 10 2003
a(n) = A000204(3^n). - Benoit Cloitre, Sep 18 2005
a(n) = round(c^(3^n)) where c = GoldenRatio = 1.6180339887498948482... = (sqrt(5)+1)/2 (A001622). - Artur Jasinski, Sep 22 2008
a(n) = a(n-1)^3 + 3*a(n-1), a(0) = 1. - Artur Jasinski, Sep 24 2008
a(n+1) = Product_{k = 0..n} A002813(k). Thus a(n) divides a(n+1). - Peter Bala, Nov 22 2012
Sum_{n>=0} a(n)^2/A045529(n+1) = 1. - Amiram Eldar, Jan 12 2022
a(n) = Product_{k=0..n-1} (Lucas(2*3^k) + 1) (Usiskin, 1973). - Amiram Eldar, Jan 29 2022
From Peter Bala, Nov 15 2022: (Start)
a(n) = Lucas(3^n) for n >= 1.
a(n) == 1 (mod 3) for n >= 1.
a(n+1) == a(n) (mod 3^(n+1)) for n >= 1 (a particular case of the Gauss congruences for the Lucas numbers).
The smallest positive residue of a(n) mod 3^n = A268924(n).
In the ring of 3-adic integers the limit_{n -> oo} a(n) exists and is equal to A271223. Cf. A006266. (End)

Extensions

The next term is too large to include.

A006268 A continued cotangent.

Original entry on oeis.org

3, 36, 46764, 102266868132036, 1069559300034650646049671039050649693658764
Offset: 0

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Continued cotangents: A006267, A006266, A006269, A145180, A145181, A145182, A145183, A145184, A145185, A145186, A145187, A145188, A145189 (k = 1 to 15 with k=4 being A006267(n+1)).

Programs

  • Mathematica
    a = {}; k = 3; Do[AppendTo[a, k]; k = k^3 + 3 k, {n, 1, 6}]; a (* Artur Jasinski, Oct 03 2008 *)
    Table[Round[N[(3/2 + Sqrt[13]/2)^(3^(n - 1)), 1000]], {n, 1, 8}] (* Artur Jasinski, Oct 03 2008 *)
  • PARI
    a(n) = if (n==0, 3, a(n-1)^3 + 3*a(n-1)); \\ Michel Marcus, Aug 28 2020

Formula

From Artur Jasinski, Oct 03 2008: (Start)
a(n+1) = a(n)^3 + 3*a(n) and a(0)=3.
a(n) = round((3/2 + sqrt(13)/2)^(3^(n - 1))). (End)
From Peter Bala, Jan 19 2022: (Start)
a(n) = (3/2 + sqrt(13)/2)^(3^(n-1)) + (3/2 - sqrt(13)/2)^(3^(n-1))
a(n) divides a(n+1) and b(n) = a(n+1)/a(n) satisfies the recurrence b(n+1) = b(n)^3 - 3*b(n-1)^2 + 3. For remarks about this recurrence see A002813.
1 + a(n)^2 = A006273(n+1). (End)

A145180 Continued cotangent recurrence a(n+1) = a(n)^3 + 3*a(n) and a(1) = 6.

Original entry on oeis.org

6, 234, 12813606, 2103846732371087589834, 9311985549495522884757461748592522243432897275494229148348315206
Offset: 1

Views

Author

Artur Jasinski, Oct 03 2008

Keywords

Comments

General formula for continued cotangent recurrences type:
a(n+1) = a(n)3 + 3*a(n) and a(1)=k is following:
a(n) = Floor[((k+Sqrt[k^2+4])/2)^(3^(n-1))].
The next term (a(6)) has 192 digits. - Harvey P. Dale, Mar 09 2013

Crossrefs

Programs

  • Mathematica
    a = {}; k = 6; Do[AppendTo[a, k]; k = k^3 + 3 k, {n, 1, 6}]; a
    or
    Table[Floor[((6 + Sqrt[40])/2)^(3^(n - 1))], {n, 1, 5}] (* Artur Jasinski *)
    NestList[#^3+3#&,6,5] (* Harvey P. Dale, Mar 09 2013 *)

Formula

a(n+1)=a(n)^3 + 3*a(n) and a(1)=6
a(n)=Floor[((6+Sqrt[6^2+4])/2)^(3^(n-1))]
a(n) divides a(n+1) and b(n) = a(n+1)/a(n) satisfies the recurrence b(n+1) = b(n)^3 - 3*b(n-1)^2 + 3. See A002813. - Peter Bala, Nov 23 2012

A145189 Continued cotangent recurrence a(n+1)=a(n)^3+3*a(n) and a(1)=15.

Original entry on oeis.org

15, 3420, 40001698260, 64008151994095341241755497070780, 262244184463346778261182615794616508638576477409715732397097802610370956164308073990185129764340
Offset: 1

Views

Author

Artur Jasinski, Oct 03 2008

Keywords

Comments

General formula for continued cotangent recurrences type:
a(n+1)=a(n)3+3*a(n) and a(1)=k is following:
a(n)=Floor[((k+Sqrt[k^2+4])/2)^(3^(n-1))]
k=1 see A006267
k=2 see A006266
k=3 see A006268
k=4 see A006267(n+1)
k=5 see A006269
k=6 see A145180
k=7 see A145181
k=8 see A145182
k=9 see A145183
k=10 see A145184
k=11 see A145185
k=12 see A145186
k=13 see A145187
k=14 see A145188
k=15 see A145189

Crossrefs

Programs

  • Mathematica
    a = {}; k = 15; Do[AppendTo[a, k]; k = k^3 + 3 k, {n, 1, 6}]; a
    or
    Table[Floor[((15 + Sqrt[229])/2)^(3^(n - 1))], {n, 1, 5}] (*Artur Jasinski*)
    NestList[#^3+3#&,15,5] (* Harvey P. Dale, Aug 20 2017 *)

Formula

a(n+1)=a(n)3+3*a(n) and a(1)=14
a(n)=Floor[((14+Sqrt[14^2+4])/2)^(3^(n-1))]

A145181 Continued cotangent recurrence a(n+1)=a(n)^3+3*a(n) and a(1)=7.

Original entry on oeis.org

7, 364, 48229636, 112186849649044142700364, 1411971263214164889494039458947084336929208169473485667118006013929636
Offset: 1

Views

Author

Artur Jasinski, Oct 03 2008

Keywords

Comments

General formula for continued cotangent recurrences type:
a(n+1)=a(n)3+3*a(n) and a(1)=k is following:
a(n)=Floor[((k+Sqrt[k^2+4])/2)^(3^(n-1))]
k=1 see A006267
k=2 see A006266
k=3 see A006268
k=4 see A006267(n+1)
k=5 see A006269
k=6 see A145180
k=7 see A145181
k=8 see A145182
k=9 see A145183
k=10 see A145184
k=11 see A145185
k=12 see A145186
k=13 see A145187
k=14 see A145188
k=15 see A145189

Crossrefs

Programs

  • Mathematica
    a = {}; k = 7; Do[AppendTo[a, k]; k = k^3 + 3 k, {n, 1, 6}]; a
    or
    Table[Floor[((7 + Sqrt[53])/2)^(3^(n - 1))], {n, 1, 5}] (*Artur Jasinski*)

Formula

a(n+1)=a(n)^3 + 3*a(n) and a(1)=7
a(n)=Floor[((7+Sqrt[7^2+4])/2)^(3^(n-1))]

A145182 Continued cotangent recurrence a(n+1)=a(n)^3+3*a(n) and a(1)=8.

Original entry on oeis.org

8, 536, 153992264, 3651713626720249047672536, 48695646535829720063008633136610768101443687873746944465180200686293744264
Offset: 1

Views

Author

Artur Jasinski, Oct 03 2008

Keywords

Comments

General formula for continued cotangent recurrences type:
a(n+1)=a(n)3+3*a(n) and a(1)=k is following:
a(n)=Floor[((k+Sqrt[k^2+4])/2)^(3^(n-1))]
k=1 see A006267
k=2 see A006266
k=3 see A006268
k=4 see A006267(n+1)
k=5 see A006269
k=6 see A145180
k=7 see A145181
k=8 see A145182
k=9 see A145183
k=10 see A145184
k=11 see A145185
k=12 see A145186
k=13 see A145187
k=14 see A145188
k=15 see A145189
The next term has 222 digits. - Harvey P. Dale, Mar 02 2018

Crossrefs

Programs

  • Mathematica
    a = {}; k = 7; Do[AppendTo[a, k]; k = k^3 + 3 k, {n, 1, 6}]; a
    or
    Table[Floor[((8 + Sqrt[68])/2)^(3^(n - 1))], {n, 1, 5}] (*Artur Jasinski*)
    RecurrenceTable[{a[1]==8,a[n]==a[n-1]^3+3a[n-1]},a,{n,5}] (* Harvey P. Dale, Mar 02 2018 *)

Formula

a(n+1)=a(n)3+3*a(n) and a(1)=8
a(n)=Floor[((8+Sqrt[8^2+4])/2)^(3^(n-1))]

A145183 Continued cotangent recurrence a(n+1)=a(n)^3+3*a(n) and a(1)=9.

Original entry on oeis.org

9, 756, 432083484, 80668317387203269343374356, 524939187888223206865848253384923777974930416670334526494423558665677185033084
Offset: 1

Views

Author

Artur Jasinski, Oct 03 2008

Keywords

Comments

General formula for continued cotangent recurrences type:
a(n+1)=a(n)3+3*a(n) and a(1)=k is following:
a(n)=Floor[((k+Sqrt[k^2+4])/2)^(3^(n-1))]
For k=1 see A006267
k=2 see A006266
k=3 see A006268
k=4 see A006267(n+1)
k=5 see A006269
k=6 see A145180
k=7 see A145181
k=8 see A145182
k=9 see A145183
k=10 see A145184
k=11 see A145185
k=12 see A145186
k=13 see A145187
k=14 see A145188
k=15 see A145189

Crossrefs

Programs

  • Mathematica
    a = {}; k = 9; Do[AppendTo[a, k]; k = k^3 + 3 k, {n, 1, 6}]; a
    or
    Table[Floor[((9 + Sqrt[85])/2)^(3^(n - 1))], {n, 1, 5}] (*Artur Jasinski*)
    NestList[#^3+3#&,9,5] (* Harvey P. Dale, Nov 02 2011 *)

Formula

a(n+1)=a(n)3+3*a(n) and a(1)=9
a(n)=Floor[((9+Sqrt[9^2+4])/2)^(3^(n-1))]

A145184 Continued cotangent recurrence a(n+1)=a(n)^3+3*a(n) and a(1)=10.

Original entry on oeis.org

10, 1030, 1092730090, 1304784252725333839617919270, 2221345538213703371536935622204403026741331806706388823688859272519059871168740810
Offset: 1

Views

Author

Artur Jasinski, Oct 03 2008

Keywords

Comments

General formula for continued cotangent recurrences type:
a(n+1)=a(n)3+3*a(n) and a(1)=k is following:
a(n)=Floor[((k+Sqrt[k^2+4])/2)^(3^(n-1))]
k=1 see A006267
k=2 see A006266
k=3 see A006268
k=4 see A006267(n+1)
k=5 see A006269
k=6 see A145180
k=7 see A145181
k=8 see A145182
k=9 see A145183
k=10 see A145184
k=11 see A145185
k=12 see A145186
k=13 see A145187
k=14 see A145188
k=15 see A145189

Crossrefs

Programs

  • Mathematica
    a = {}; k = 10; Do[AppendTo[a, k]; k = k^3 + 3 k, {n, 1, 6}]; a
    or
    Table[Floor[((10 + Sqrt[104])/2)^(3^(n - 1))], {n, 1, 5}] (*Artur Jasinski*)

Formula

a(n+1)=a(n)3+3*a(n) and a(1)=10
a(n)=Floor[((10+Sqrt[10^2+4])/2)^(3^(n-1))]

A145185 Continued cotangent recurrence a(n+1)=a(n)^3+3*a(n) and a(1)=11.

Original entry on oeis.org

11, 1364, 2537720636, 16342986943522226847837781364, 4365101043708483494615466932242949707161871659736799144058331102381689400753867700636
Offset: 1

Views

Author

Artur Jasinski, Oct 03 2008

Keywords

Comments

General formula for continued cotangent recurrences type:
a(n+1)=a(n)3+3*a(n) and a(1)=k is following:
a(n)=Floor[((k+Sqrt[k^2+4])/2)^(3^(n-1))]
k=1 see A006267
k=2 see A006266
k=3 see A006268
k=4 see A006267(n+1)
k=5 see A006269
k=6 see A145180
k=7 see A145181
k=8 see A145182
k=9 see A145183
k=10 see A145184
k=11 see A145185
k=12 see A145186
k=13 see A145187
k=14 see A145188
k=15 see A145189

Crossrefs

Programs

  • Mathematica
    a = {}; k = 11; Do[AppendTo[a, k]; k = k^3 + 3 k, {n, 1, 6}]; a
    or
    Table[Floor[((11 + Sqrt[125])/2)^(3^(n - 1))], {n, 1, 5}] (*Artur Jasinski*)
    RecurrenceTable[{a[1]==11,a[n]==a[n-1]^3+3*a[n-1]},a,{n,5}] (* Harvey P. Dale, Jul 23 2012 *)

Formula

a(n+1)=a(n)^3+3*a(n) and a(1)=11
a(n)=Floor[((11+Sqrt[11^2+4])/2)^(3^(n-1))]

A145186 Continued cotangent recurrence a(n+1)=a(n)^3+3*a(n) and a(1)=12.

Original entry on oeis.org

12, 1764, 5489037036, 165382092777963331246695013764, 4523404750894779548516344022127873154658656755028228436816797201835023951822441803129036
Offset: 1

Views

Author

Artur Jasinski, Oct 03 2008

Keywords

Comments

General formula for continued cotangent recurrences type:
a(n+1)=a(n)^3+3*a(n) and a(1)=k is following:
a(n)=Floor[((k+Sqrt[k^2+4])/2)^(3^(n-1))]
k=1 see A006267
k=2 see A006266
k=3 see A006268
k=4 see A006267(n+1)
k=5 see A006269
k=6 see A145180
k=7 see A145181
k=8 see A145182
k=9 see A145183
k=10 see A145184
k=11 see A145185
k=12 see A145186
k=13 see A145187
k=14 see A145188
k=15 see A145189
The next term (a(6)) has 263 digits. - Harvey P. Dale, May 21 2018

Crossrefs

Programs

  • Mathematica
    a = {}; k = 12; Do[AppendTo[a, k]; k = k^3 + 3 k, {n, 1, 6}]; a
    or
    Table[Floor[((12 + Sqrt[148])/2)^(3^(n - 1))], {n, 1, 5}] (*Artur Jasinski*)
    NestList[#^3+3#&,12,5] (* Harvey P. Dale, May 21 2018 *)

Formula

a(n+1)=a(n)3+3*a(n) and a(1)=12.
a(n)=Floor[((12+Sqrt[12^2+4])/2)^(3^(n-1))].
Showing 1-10 of 17 results. Next