cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A340292 a(n) = 4^(2*n^2) * Product_{1<=j,k<=n} (1 - sin(j*Pi/(2*n+1))^2 * sin(k*Pi/(2*n+1))^2).

Original entry on oeis.org

1, 7, 4961, 371647151, 2952717950351617, 2489597262406609716450871, 222812636926792555435326125877303201, 2116840405025957772469476908228785308996001314527, 2134958300495920487325052422663717579194357002081033470045923329
Offset: 0

Views

Author

Seiichi Manyama, Jan 03 2021

Keywords

Crossrefs

Programs

  • Mathematica
    Table[2^(4*n^2) * Product[Product[1 - Sin[j*Pi/(2*n + 1)]^2 * Sin[k*Pi/(2*n + 1)]^2, {k, 1, n}], {j, 1, n}], {n, 0, 10}] // Round (* Vaclav Kotesovec, Jan 04 2021 *)
  • PARI
    default(realprecision, 120);
    {a(n) = round(4^(2*n^2)*prod(j=1, n, prod(k=1, n, 1-(sin(j*Pi/(2*n+1))*sin(k*Pi/(2*n+1)))^2)))}

Formula

a(n) = A002315(n) * A340293(n)^2.
a(n) ~ exp(2*G*(2*n+1)^2/Pi) / 2^(4*n + 3/4), where G is Catalan's constant A006752. - Vaclav Kotesovec, Jan 04 2021

A340295 a(n) = 4^(2*n^2) * Product_{1<=j,k<=n} (1 - sin(j*Pi/(2*n+1))^2 * cos(k*Pi/(2*n+1))^2).

Original entry on oeis.org

1, 13, 18281, 2732887529, 43384923739812577, 73125714588602035608260981, 13085551252412040683513520733767180041, 248596840858215958581954513797323868183183928594833
Offset: 0

Views

Author

Seiichi Manyama, Jan 03 2021

Keywords

Comments

a(n)/A001570(n+1) is an integer.

Crossrefs

Programs

  • Mathematica
    Table[Resultant[ChebyshevT[4*n+2, x/2], ChebyshevT[4*n+2, I*x/2], x]^(1/4) / 2^n, {n, 0, 10}] (* Vaclav Kotesovec, Jan 04 2021 *)
  • PARI
    default(realprecision, 120);
    {a(n) = round(4^(2*n^2)*prod(j=1, n, prod(k=1, n, 1-(sin(j*Pi/(2*n+1))*cos(k*Pi/(2*n+1)))^2)))}
    
  • PARI
    {a(n) = sqrtint(sqrtint(polresultant(polchebyshev(4*n+2, 1, x/2), polchebyshev(4*n+2, 1, I*x/2))))/2^n}

Formula

a(n) = A334089(2*n+1).
a(n) ~ exp(2*G*(2*n+1)^2/Pi) / 2^(3*n + 7/8), where G is Catalan's constant A006752. - Vaclav Kotesovec, Jan 04 2021

A340430 Square array T(n,k), n >= 0, k >= 0, read by antidiagonals, where T(n,k) = 4^(2*n*k) * Product_{a=1..n} Product_{b=1..k} (1 - cos(a*Pi/(2*n+1))^2 * cos(b*Pi/(2*k+1))^2).

Original entry on oeis.org

1, 1, 1, 1, 15, 1, 1, 209, 209, 1, 1, 2911, 32625, 2911, 1, 1, 40545, 5015009, 5015009, 40545, 1, 1, 564719, 770100001, 8238791743, 770100001, 564719, 1, 1, 7865521, 118247646001, 13441754883649, 13441754883649, 118247646001, 7865521, 1
Offset: 0

Views

Author

Seiichi Manyama, Jan 07 2021

Keywords

Examples

			Square array begins:
  1,     1,         1,              1,                  1, ...
  1,    15,       209,           2911,              40545, ...
  1,   209,     32625,        5015009,          770100001, ...
  1,  2911,   5015009,     8238791743,     13441754883649, ...
  1, 40545, 770100001, 13441754883649, 230629380093001665, ...
		

Crossrefs

Main diagonal gives A340291.

Programs

  • PARI
    default(realprecision, 120);
    {T(n, k) = round(4^(2*n*k)*prod(a=1, n, prod(b=1, k, 1-(cos(a*Pi/(2*n+1))*cos(b*Pi/(2*k+1)))^2)))}

Formula

T(n,k) = T(k,n).

A071102 Determinant of KK* where K is Kasteleyn-Percus matrix for fool's diamond of order n.

Original entry on oeis.org

1, 2, 15, 384, 32625, 9085440, 8238791743, 24233379889152
Offset: 1

Views

Author

N. J. A. Sloane, May 28 2002

Keywords

References

  • J. Propp, Enumeration of matchings: problems and progress, pp. 255-291 in L. J. Billera et al., eds, New Perspectives in Algebraic Combinatorics, Cambridge, 1999 (see Problem 27).

Crossrefs

Formula

Conjecture from Seiichi Manyama, Jan 04 2021: (Start)
a(2*n+1) = A340291(n) = 4^(2*n^2) * Product_{1<=j,k<=n} (1 - cos(j*Pi/(2*n+1))^2 * cos(k*Pi/(2*n+1))^2).
a(2*n) = 2 * 4^(2*(n-1)) * A340166(n) = 2 * 4^(2*(n-1)*n) * Product_{1<=j,k<=n-1} (1 - cos(j*Pi/(2*n))^2 * cos(k*Pi/(2*n))^2). (End)
Showing 1-4 of 4 results.