cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A340291 a(n) = 4^(2*n^2) * Product_{1<=j,k<=n} (1 - cos(j*Pi/(2*n+1))^2 * cos(k*Pi/(2*n+1))^2).

Original entry on oeis.org

1, 15, 32625, 8238791743, 230629380093001665, 703130165949449759361247759, 231459008314298532714943209968328640625, 8186710889725936196671113787217620194601044287109375
Offset: 0

Views

Author

Seiichi Manyama, Jan 03 2021

Keywords

Crossrefs

Programs

  • Mathematica
    Table[2^(4*n^2) * Product[Product[1 - Cos[j*Pi/(2*n+1)]^2 * Cos[k*Pi/(2*n+1)]^2, {j, 1, n}], {k, 1, n}], {n, 0, 10}] // Round (* Vaclav Kotesovec, Jan 03 2021 *)
  • PARI
    default(realprecision, 120);
    {a(n) = round(4^(2*n^2)*prod(j=1, n, prod(k=1, n, 1-(cos(j*Pi/(2*n+1))*cos(k*Pi/(2*n+1)))^2)))}

Formula

a(n) = A093967(2*n+1) * A340185(n)^2.
a(n) ~ Gamma(1/4) * exp(2*G*(2*n+1)^2/Pi) / (Pi^(3/4) * sqrt(n) * 2^(2*n + 2)), where G is Catalan's constant A006752. - Vaclav Kotesovec, Jan 03 2021

A340295 a(n) = 4^(2*n^2) * Product_{1<=j,k<=n} (1 - sin(j*Pi/(2*n+1))^2 * cos(k*Pi/(2*n+1))^2).

Original entry on oeis.org

1, 13, 18281, 2732887529, 43384923739812577, 73125714588602035608260981, 13085551252412040683513520733767180041, 248596840858215958581954513797323868183183928594833
Offset: 0

Views

Author

Seiichi Manyama, Jan 03 2021

Keywords

Comments

a(n)/A001570(n+1) is an integer.

Crossrefs

Programs

  • Mathematica
    Table[Resultant[ChebyshevT[4*n+2, x/2], ChebyshevT[4*n+2, I*x/2], x]^(1/4) / 2^n, {n, 0, 10}] (* Vaclav Kotesovec, Jan 04 2021 *)
  • PARI
    default(realprecision, 120);
    {a(n) = round(4^(2*n^2)*prod(j=1, n, prod(k=1, n, 1-(sin(j*Pi/(2*n+1))*cos(k*Pi/(2*n+1)))^2)))}
    
  • PARI
    {a(n) = sqrtint(sqrtint(polresultant(polchebyshev(4*n+2, 1, x/2), polchebyshev(4*n+2, 1, I*x/2))))/2^n}

Formula

a(n) = A334089(2*n+1).
a(n) ~ exp(2*G*(2*n+1)^2/Pi) / 2^(3*n + 7/8), where G is Catalan's constant A006752. - Vaclav Kotesovec, Jan 04 2021

A340428 Square array T(n,k), n >= 0, k >= 0, read by antidiagonals, where T(n,k) = 4^(2*n*k) * Product_{a=1..n} Product_{b=1..k} (1 - sin(a*Pi/(2*n+1))^2 * sin(b*Pi/(2*k+1))^2).

Original entry on oeis.org

1, 1, 1, 1, 7, 1, 1, 61, 61, 1, 1, 547, 4961, 547, 1, 1, 4921, 432461, 432461, 4921, 1, 1, 44287, 38484961, 371647151, 38484961, 44287, 1, 1, 398581, 3445022461, 330435708793, 330435708793, 3445022461, 398581, 1
Offset: 0

Views

Author

Seiichi Manyama, Jan 07 2021

Keywords

Examples

			Square array begins:
  1,    1,        1,            1,                1, ...
  1,    7,       61,          547,             4921, ...
  1,   61,     4961,       432461,         38484961, ...
  1,  547,   432461,    371647151,     330435708793, ...
  1, 4921, 38484961, 330435708793, 2952717950351617, ...
		

Crossrefs

Main diagonal gives A340292.

Programs

  • PARI
    default(realprecision, 120);
    {T(n, k) = round(4^(2*n*k)*prod(a=1, n, prod(b=1, k, 1-(sin(a*Pi/(2*n+1))*sin(b*Pi/(2*k+1)))^2)))}

Formula

T(n,k) = T(k,n).

A340293 a(n) = 4^((n-1)*n) * Product_{1<=j

Original entry on oeis.org

1, 1, 11, 1247, 1455913, 17511093953, 2169916151129091, 2770393222231417622719, 36443188794328204864735075793, 4939371777650229260975457785579794433, 6897784079863728378183626237683602071537213179
Offset: 0

Views

Author

Seiichi Manyama, Jan 03 2021

Keywords

Crossrefs

Programs

  • Mathematica
    Table[2^(2*n*(n-1)) * Product[Product[1 - Sin[j*Pi/(2*n + 1)]^2*Sin[k*Pi/(2*n + 1)]^2, {k, j+1, n}], {j, 1, n}], {n, 0, 12}] // Round (* Vaclav Kotesovec, Jan 04 2021 *)
  • PARI
    default(realprecision, 120);
    {a(n) = round(4^((n-1)*n)*prod(j=1, n, prod(k=j+1, n, 1-(sin(j*Pi/(2*n+1))*sin(k*Pi/(2*n+1)))^2)))}

Formula

a(n) ~ exp(G*(2*n+1)^2/Pi) / (2^(2*n - 1/8) * (1 + sqrt(2))^(n + 1/2)), where G is Catalan's constant A006752. - Vaclav Kotesovec, Jan 04 2021
Showing 1-4 of 4 results.