cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A340291 a(n) = 4^(2*n^2) * Product_{1<=j,k<=n} (1 - cos(j*Pi/(2*n+1))^2 * cos(k*Pi/(2*n+1))^2).

Original entry on oeis.org

1, 15, 32625, 8238791743, 230629380093001665, 703130165949449759361247759, 231459008314298532714943209968328640625, 8186710889725936196671113787217620194601044287109375
Offset: 0

Views

Author

Seiichi Manyama, Jan 03 2021

Keywords

Crossrefs

Programs

  • Mathematica
    Table[2^(4*n^2) * Product[Product[1 - Cos[j*Pi/(2*n+1)]^2 * Cos[k*Pi/(2*n+1)]^2, {j, 1, n}], {k, 1, n}], {n, 0, 10}] // Round (* Vaclav Kotesovec, Jan 03 2021 *)
  • PARI
    default(realprecision, 120);
    {a(n) = round(4^(2*n^2)*prod(j=1, n, prod(k=1, n, 1-(cos(j*Pi/(2*n+1))*cos(k*Pi/(2*n+1)))^2)))}

Formula

a(n) = A093967(2*n+1) * A340185(n)^2.
a(n) ~ Gamma(1/4) * exp(2*G*(2*n+1)^2/Pi) / (Pi^(3/4) * sqrt(n) * 2^(2*n + 2)), where G is Catalan's constant A006752. - Vaclav Kotesovec, Jan 03 2021

A340292 a(n) = 4^(2*n^2) * Product_{1<=j,k<=n} (1 - sin(j*Pi/(2*n+1))^2 * sin(k*Pi/(2*n+1))^2).

Original entry on oeis.org

1, 7, 4961, 371647151, 2952717950351617, 2489597262406609716450871, 222812636926792555435326125877303201, 2116840405025957772469476908228785308996001314527, 2134958300495920487325052422663717579194357002081033470045923329
Offset: 0

Views

Author

Seiichi Manyama, Jan 03 2021

Keywords

Crossrefs

Programs

  • Mathematica
    Table[2^(4*n^2) * Product[Product[1 - Sin[j*Pi/(2*n + 1)]^2 * Sin[k*Pi/(2*n + 1)]^2, {k, 1, n}], {j, 1, n}], {n, 0, 10}] // Round (* Vaclav Kotesovec, Jan 04 2021 *)
  • PARI
    default(realprecision, 120);
    {a(n) = round(4^(2*n^2)*prod(j=1, n, prod(k=1, n, 1-(sin(j*Pi/(2*n+1))*sin(k*Pi/(2*n+1)))^2)))}

Formula

a(n) = A002315(n) * A340293(n)^2.
a(n) ~ exp(2*G*(2*n+1)^2/Pi) / 2^(4*n + 3/4), where G is Catalan's constant A006752. - Vaclav Kotesovec, Jan 04 2021

A334089 a(n) = sqrt(A334088(n)/2^(n-1)).

Original entry on oeis.org

1, 2, 13, 272, 18281, 3944920, 2732887529, 6077512159232, 43384923739812577, 994156445200670735008, 73125714588602035608260981, 17265651822746410593596262486016, 13085551252412040683513520733767180041, 31834381760532514451976501491991780699626368
Offset: 1

Views

Author

Seiichi Manyama, Apr 14 2020

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Resultant[ChebyshevT[2*n, x/2], ChebyshevT[2*n, I*x/2], x]^(1/4) / 2^((n-1)/2), {n, 1, 15}] (* Vaclav Kotesovec, Apr 14 2020 *)
  • PARI
    {a(n) = sqrtint(sqrtint(polresultant(polchebyshev(2*n, 1, x/2), polchebyshev(2*n, 1, I*x/2)))/2^(n-1))}

Formula

a(n) ~ exp(2*G*n^2/Pi) / 2^(3*n/2 - 5/8), where G is Catalan's constant A006752. - Vaclav Kotesovec, Apr 14 2020

A340432 Square array T(n,k), n >= 0, k >= 0, read by antidiagonals, where T(n,k) = 4^(2*n*k) * Product_{a=1..n} Product_{b=1..k} (1 - sin(a*Pi/(2*n+1))^2 * cos(b*Pi/(2*k+1))^2).

Original entry on oeis.org

1, 1, 1, 1, 13, 1, 1, 121, 181, 1, 1, 1093, 18281, 2521, 1, 1, 9841, 1690781, 2803921, 35113, 1, 1, 88573, 152963281, 2732887529, 430503601, 489061, 1, 1, 797161, 13755675781, 2555011015201, 4447515497881, 66102491401, 6811741, 1
Offset: 0

Views

Author

Seiichi Manyama, Jan 07 2021

Keywords

Examples

			Square array begins:
  1,     1,         1,             1,                 1, ...
  1,    13,       121,          1093,              9841, ...
  1,   181,     18281,       1690781,         152963281, ...
  1,  2521,   2803921,    2732887529,     2555011015201, ...
  1, 35113, 430503601, 4447515497881, 43384923739812577, ...
		

Crossrefs

Main diagonal gives A340295.

Programs

  • PARI
    default(realprecision, 120);
    {T(n, k) = round(4^(2*n*k)*prod(a=1, n, prod(b=1, k, 1-(sin(a*Pi/(2*n+1))*cos(b*Pi/(2*k+1)))^2)))}
Showing 1-4 of 4 results.