A116562 Duplicate of A045925.
0, 1, 2, 6, 12, 25, 48, 91, 168, 306, 550, 979, 1728, 3029, 5278, 9150, 15792, 27149, 46512, 79439, 135300, 229866, 389642, 659111, 1112832
Offset: 0
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
2, x, 2 + x^2, 3*x + x^3, 2 + 4*x^2 + x^4, 5*x + 5*x^3 + x^5, ... give triangle n\k 0 1 2 3 4 5 6 7 8 9 10 ... 0: 2 1: 0 1 2: 2 0 1 3: 0 3 0 1 4: 2 0 4 0 1 5: 0 5 0 5 0 1 6: 2 0 9 0 6 0 1 7: 0 7 0 14 0 7 0 1 8: 2 0 16 0 20 0 8 0 1 9: 0 9 0 30 0 27 0 9 0 1 10: 2 0 25 0 50 0 35 0 10 0 1 n\k 0 1 2 3 4 5 6 7 8 9 10 ... .... reformatted by _Wolfdieter Lang_, Feb 10 2023
Lucas := proc(n,x) option remember; if n=0 then 2; elif n =1 then x ; else x*procname(n-1,x)+procname(n-2,x) ; end if; end proc: A114525 := proc(n,k) coeftayl(Lucas(n,x),x=0,k) ; end proc: seq(seq(A114525(n,k),k=0..n),n=0..12) ; # R. J. Mathar, Aug 16 2019
row[n_] := CoefficientList[LucasL[n, x], x]; Table[row[n], {n, 0, 12}] // Flatten (* Jean-François Alcover, Aug 11 2018 *)
n=3: The zeros are [sqrt(2),0,-sqrt(2)]. The Vn(xn[1],...,xn[n]) matrix is [[1,1,1],[sqrt(2),0,-sqrt(2)],[2,0,2]]. The squared determinant is 32 = a(3). - _Wolfdieter Lang_, Aug 07 2011
[((n+1)^n/(n+1)^2)*2^n: n in [1..20]]; // Vincenzo Librandi, Jun 23 2014
Table[((n + 1)^n)/(n + 1)^2 2^n, {n, 1, 30}] (* Vincenzo Librandi, Jun 23 2014 *)
a099920 n = a099920_list !! n a099920_list = zipWith (*) [1..] a000045_list -- Reinhard Zumkeller, Oct 07 2012
[(n+1)*Fibonacci(n): n in [0..60]]; // Vincenzo Librandi, Apr 23 2011
Table[(n + 1) Fibonacci[n], {n, 0, 40}] (* Harvey P. Dale, Jan 18 2012 *) LinearRecurrence[{2, 1, -2, -1}, {0, 2, 3, 8}, 40] (* Harvey P. Dale, Jan 18 2012 *) CoefficientList[Series[(2 - x) x/(-1 + x + x^2)^2, {x, 0, 20}], x] (* Eric W. Weisstein, Jul 28 2023 *)
a(n)=(n+1)*fibonacci(n) \\ Charles R Greathouse IV, Jun 11 2015
a(6) = 45 + 22 + A000045(6+2) = 45 + 22 + 21 = 88. - _Philippe Deléham_, Jan 22 2012
List([1..40], n-> (n*Lucas(1,-1,n+3)[2] - 2*Fibonacci(n))/5); # G. C. Greubel, Jul 07 2019
I:=[1,4,10,22]; [n le 4 select I[n] else 2*Self(n-1)+Self(n-2)-2*Self(n-3)-Self(n-4): n in [1..40]]; // Vincenzo Librandi, Apr 08 2018
a:= n-> (<<0|1|0|0>, <0|0|1|0>, <0|0|0|1>, <-1|-2|1|2>>^n. <<0, 1, 4, 10>>)[1, 1]: seq(a(n), n=1..40); # Alois P. Heinz, Jul 04 2013 # Alternative: a := n -> n*(hypergeom([-(n+1)/2,-n/2],[-n-1],-4) - hypergeom([(1-n)/2,1-n/2],[-n], -4)): seq(simplify(a(n)), n=1..40); # Peter Luschny, Apr 10 2018
nn=40; Drop[CoefficientList[Series[D[(1+x)/(1-y x -y x^2),y]/.y->1,{x,0,nn}],x],1] (* Geoffrey Critzer, Jul 22 2013 *) Table[n Fibonacci[n] + 2/5 (n LucasL[n] - Fibonacci[n]), {n, 40}] (* Vladimir Reshetnikov, Sep 27 2016 *) a[n_] := ListConvolve[f = Fibonacci[Range[2, n+1]], f][[1]]; Array[a, 40] (* Jean-François Alcover, Feb 15 2018 *) LinearRecurrence[{2, 1, -2, -1}, {1, 4, 10, 22}, 40] (* Vincenzo Librandi, Apr 08 2014 *)
Vec(((1+x)/(1-x-x^2))^2+O(x^66)) \\ Joerg Arndt, Jul 04 2013
[(n*lucas_number2(n+3,1,-1) - 2*fibonacci(n))/5 for n in (1..40)] # G. C. Greubel, Jul 07 2019
List([0..50], n-> Fibonacci(n) - n); # G. C. Greubel, Jul 09 2019
a065220 n = a065220_list !! n a065220_list = zipWith (-) a000045_list [0..] -- Reinhard Zumkeller, Nov 06 2012
[Fibonacci(n) - n: n in [0..50]]; // G. C. Greubel, Jul 09 2019
a[0]:=0:a[1]:=1:for n from 2 to 50 do a[n]:=a[n-1]+a[n-2] od: seq(a[n]-n, n=0..42); # Zerinvary Lajos, Mar 20 2008
lst={};Do[f=Fibonacci[n]-n;AppendTo[lst,f],{n,0,5!}];lst (* Vladimir Joseph Stephan Orlovsky, Mar 21 2009 *) Table[Fibonacci[n]-n,{n,0,50}] (* or *) LinearRecurrence[{3,-2,-1,1},{0,0,-1,-1},50] (* Harvey P. Dale, May 29 2017 *)
a(n) = { fibonacci(n) - n } \\ Harry J. Smith, Oct 14 2009
[fibonacci(n) - n for n in (0..50)] # G. C. Greubel, Jul 09 2019
List([0..50], n-> n*Fibonacci(n+2)-Fibonacci(n+3)+2); # G. C. Greubel, Jun 13 2019
[n*Fibonacci(n+2)-Fibonacci(n+3)+2: n in [0..50]]; // Vincenzo Librandi, Mar 31 2011
A014286 := proc(n) add(i*combinat[fibonacci](i),i=0..n) ; end proc: # R. J. Mathar, Apr 11 2016
Accumulate[Table[Fibonacci[n]*n, {n, 0, 50}]] (* Vladimir Joseph Stephan Orlovsky, Jun 28 2011 *) a[0] = 0; a[1] = 1; a[2] = 3; a[3] = 9; a[n_] := a[n] = 2 a[n-1] + a[n-2] - 2 a[n-3] - a[n-4] + 2; Table[a[n], {n, 0, 50}] (* Vladimir Reshetnikov, Oct 28 2015 *)
concat(0, Vec(x*(1+x^2)/((1-x)*(1-x-x^2)^2) + O(x^50))) \\ Altug Alkan, Oct 28 2015
[n*fibonacci(n+2)-fibonacci(n+3)+2 for n in (0..50)] # G. C. Greubel, Jun 13 2019
a(7) = F(7) + 6*F(6) = 13 + 6*8 = 61.
a007502 n = a007502_list !! (n-1) a007502_list = zipWith (+) a045925_list $ tail a000045_list -- Reinhard Zumkeller, Oct 01 2012, Mar 04 2012
# The function 'fibrec' is defined in A354044. function A007502(n) n == 0 && return BigInt(1) a, b = fibrec(n-1) (n-1)*a + b end println([A007502(n) for n in 1:32]) # Peter Luschny, May 18 2022
A007502:= func< n | Fibonacci(n) +(n-1)*Fibonacci(n-1) >; [A007502(n): n in [1..40]]; // G. C. Greubel, Aug 26 2025
Table[Fibonacci[n]+(n-1)*Fibonacci[n-1], {n,40}] (* or *) LinearRecurrence[ {2,1,-2,-1}, {1,2,4,9}, 40](* Harvey P. Dale, Jul 13 2011 *) f[n_] := Denominator@ FromContinuedFraction@ Join[ Table[1, {n}], {n + 1}]; Array[f, 30, 0] (* Robert G. Wilson v, Mar 04 2012 *)
Vec((1-x^2+x^3)/(1-x-x^2)^2+O(x^99)) \\ Charles R Greathouse IV, Mar 04 2012
def A007502(n): return fibonacci(n) +(n-1)*fibonacci(n-1) print([A007502(n) for n in range(1,41)]) # G. C. Greubel, Aug 26 2025
a(3)/A007502(4) = [1;1,1,4] = 14/9.
a088209 n = a088209_list !! n a088209_list = zipWith (+) a000045_list $ tail a045925_list -- Reinhard Zumkeller, Oct 01 2012, Mar 04 2012
# The function 'fibrec' is defined in A354044. function A088209(n) n == 0 && return BigInt(1) a, b = fibrec(n) a + (n + 1)*b end println([A088209(n) for n in 0:32]) # Peter Luschny, May 18 2022
f[n_] := Numerator@ FromContinuedFraction@ Join[ Table[1, {n}], {n + 1}]; Array[f, 30, 0] (* Robert G. Wilson v, Mar 04 2012 *) CoefficientList[Series[(1+x-x^3)/(-1+x+x^2)^2,{x,0,40}],x] (* or *) LinearRecurrence[{2,1,-2,-1},{1,3,7,14},40] (* Harvey P. Dale, Jul 13 2021 *)
Rows begin: 1; 1, -1; 3, -2, 1; 4, -6, 3, -1; 7, -12, 10, -4, 1; 11, -25, 25, -15, 5, -1; 18, -48, 60, -44, 21, -6, 1; 29, -91, 133, -119, 70, -28, 7, -1; 47, -168, 284, -296, 210, -104, 36, -8, 1; 76, -306, 585, -699, 576, -342, 147, -45, 9, -1; ...
S:= series((1 + x^2)/(1-x-x^2 + x*y),x, 20): for n from 0 to 19 do R[n]:= coeff(S,x,n) od: seq(seq(coeff(R[n],y,j),j=0..n), n=0..19); # Robert Israel, Jun 30 2015
nmax = 11; T[n_, k_] := Coefficient[(1 + x - x^2)^n, x, n + k]; M = Table[T[n, k], {n, 0, nmax}, {k, 0, nmax}] // Inverse; Table[M[[n+1, k+1]], {n, 0, nmax}, {k, 0, n}] // Flatten (* Jean-François Alcover, Mar 27 2019 *)
{ T(n,k) = my(X=x+x*O(x^n),Y=y+y*O(y^k)); polcoeff(polcoeff((1 + X^2)/(1-X-X^2 + X*Y),n,x),k,y); }
{ tabl(nn) = my(m = matrix(nn, nn, n, k, n--; k--; if((nMichel Marcus, Jun 30 2015
{ A104509(n,k) = if(n==0, k==0, (-1)^k * sum(i=0, (n-k)\2, n/(n-i) * binomial(n-k-i,i) * binomial(n-i,k) )); } \\ Max Alekseyev, Oct 11 2021
Comments