cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 28 results. Next

A116562 Duplicate of A045925.

Original entry on oeis.org

0, 1, 2, 6, 12, 25, 48, 91, 168, 306, 550, 979, 1728, 3029, 5278, 9150, 15792, 27149, 46512, 79439, 135300, 229866, 389642, 659111, 1112832
Offset: 0

Views

Author

Roger L. Bagula, Mar 17 2006

Keywords

A114525 Triangle of coefficients of the Lucas (w-)polynomials.

Original entry on oeis.org

2, 0, 1, 2, 0, 1, 0, 3, 0, 1, 2, 0, 4, 0, 1, 0, 5, 0, 5, 0, 1, 2, 0, 9, 0, 6, 0, 1, 0, 7, 0, 14, 0, 7, 0, 1, 2, 0, 16, 0, 20, 0, 8, 0, 1, 0, 9, 0, 30, 0, 27, 0, 9, 0, 1, 2, 0, 25, 0, 50, 0, 35, 0, 10, 0, 1, 0, 11, 0, 55, 0, 77, 0, 44, 0, 11, 0, 1, 2, 0, 36, 0, 105, 0, 112, 0, 54, 0, 12, 0, 1
Offset: 0

Views

Author

Eric W. Weisstein, Dec 06 2005

Keywords

Comments

Unsigned version of A108045.
The row reversed triangle is A162514. - Paolo Bonzini, Jun 23 2016

Examples

			2, x, 2 + x^2, 3*x + x^3, 2 + 4*x^2 + x^4, 5*x + 5*x^3 + x^5, ... give triangle
  n\k   0  1  2  3  4  5  6  7  8  9 10 ...
  0:    2
  1:    0  1
  2:    2  0  1
  3:    0  3  0  1
  4:    2  0  4  0  1
  5:    0  5  0  5  0  1
  6:    2  0  9  0  6  0  1
  7:    0  7  0 14  0  7  0  1
  8:    2  0 16  0 20  0  8  0  1
  9:    0  9  0 30  0 27  0  9  0  1
  10:   2  0 25  0 50  0 35  0 10  0  1
  n\k   0  1  2  3  4  5  6  7  8  9 10 ...
  .... reformatted by _Wolfdieter Lang_, Feb 10 2023
		

Crossrefs

Cf. A108045 (signed version).
Cf. Sequences L(n,x): A000032(x = 1), A002203 (x = 2), A006497 (x = 3), A014448 (x = 4), A087130 (x = 5), A085447 (x = 6), A086902 (x = 7), A086594 (x = 8), A087798 (x = 9), A086927 (x = 10), A001946 (x = 11), A086928 (x = 12), A088316 (x = 13), A090300 (x = 14), A090301 (x = 15), A090305 (x = 16), A090306 (x = 17), A090307 (x = 18), A090308 (x = 19), A090309 (x = 20), A090310 (x = 21), A090313 (x = 22), A090314 (x = 23), A090316 (x = 24), A087281 (x = 29), A087287 (x = 76), A089772 (x = 199).

Programs

  • Maple
    Lucas := proc(n,x)
        option remember;
        if  n=0 then
            2;
        elif n =1 then
            x ;
        else
            x*procname(n-1,x)+procname(n-2,x) ;
        end if;
    end proc:
    A114525 := proc(n,k)
        coeftayl(Lucas(n,x),x=0,k) ;
    end proc:
    seq(seq(A114525(n,k),k=0..n),n=0..12) ; # R. J. Mathar, Aug 16 2019
  • Mathematica
    row[n_] := CoefficientList[LucasL[n, x], x];
    Table[row[n], {n, 0, 12}] // Flatten (* Jean-François Alcover, Aug 11 2018 *)

Formula

From Peter Bala, Mar 18 2015: (Start)
The Lucas polynomials L(n,x) satisfy the recurrence L(n+1,x) = x*L(n,x) + L(n-1,x) with L(0,x) = 2 and L(1,x) = x.
O.g.f.: Sum_{n >= 0} L(n,x)*t^n = (2 - x*t)/(1 - t^2 - x*t) = 2 + x*t + (x^2 + 2)*t^2 + (3*x + x^3)*t^3 + ....
L(n,x) = trace( [ x, 1; 1, 0 ]^n ).
exp( Sum_{n >= 1} L(n,x)*t^n/n ) = Sum_{n >= 0} F(n+1,x)*t^n, where F(n,x) denotes the n-th Fibonacci polynomial. (see Appendix A3 in Johnson).
exp( Sum_{n >= 1} L(n,x)*L(2*n,x)*t^n/n ) = 1/( F(1,x)*F(2*x)*F(3,x) ) * Sum_{n >= 0} F(n+1,x)*F(n+2,x)*F(n+3,x)*t^n.
exp( Sum_{n >= 1} L(3*n,x)/L(n,x)*t^n/n ) = Sum_{n >= 0} L(2*n + 1,x)*t^n.
L(n,1) = Lucas(n) = A000032(n); L(n,4) = Lucas(3*n) = A014448(n); L(n,11) = Lucas(5*n) = A001946(n); L(n,29) = Lucas(7*n) = A087281(n); L(n,76) = Lucas(9*n) = A087287(n); L(n,199) = Lucas(11*n) = A089772(n). The general result is L(n,Lucas(2*k + 1)) = Lucas((2*k + 1)*n). (End)
From Jeremy Dover, Jun 10 2016: (Start)
Read as a triangle T(n,k), n >= 0, n >= k >= 0, T(n,k) = (Binomial((n+k)/2,k) + Binomial((n+k-2)/2,k))*(1+(-1)^(n-k))/2.
T(n,k) = A046854(n-1,k-1) + A046854(n-1,k) + A046854(n-2,k) for even n+k with n+k > 0, assuming A046854(n,k) = 0 for n < 0, k < 0, k > n.
T(n,k) is the number of binary strings of length n with exactly k pairs of consecutive 0's and no pair of consecutive 1's, where the first and last bits are considered consecutive. (End)
From Peter Bala, Sep 03 2022: (Start)
L(n,x) = 2*(i)^n*T(n,-i*x/2), where i = sqrt(-1) and T(n,x) is the n-th Chebyshev polynomial of the first kind.
d/dx(L(n,x)) = n*F(n,x), where F(n,x) denotes the n-th Fibonacci polynomial.
Let P_n(x,y) = (L(n,x) - L(n,y))/(x - y). Then {P_n(x,y): n >= 1} is a fourth-order linear divisibility sequence of polynomials in the ring Z[x,y]: if m divides n in Z then P_m(x,y) divides P_n(x,y) in Z[x,y].
P_n(1,1) = A045925(n); P_n(1,4) = A273622; P_n(2,2) = A093967(n).
L(2*n,x)^2 - L(2*n-1,x)*L(2*n+1,x) = x^2 + 4 for n >= 1.
Sum_{n >= 1} L(2*n,x)/( L(2*n-1,x) * L(2*n+1,x) ) = 1/x^2 and
Sum_{n >= 1} (-1)^(n+1)/( L(2*n,x) + x^2/L(2*n,x) ) = 1/(x^2 + 4), both valid for all nonzero real x. (End)
From Peter Bala, Nov 18 2022: (Start)
L(n,x) = Sum_{k = 0..floor(n/2)} (n/(n-k))*binomial(n-k,k)*x^(n-2*k) for n >= 1.
For odd m, L(n, L(m,x)) = L(n*m, x).
For integral x, the sequence {u(n)} := {L(n,x)} satisfies the Gauss congruences: u(m*p^r) == u(m*p^(r-1)) (mod p^r) for all positive integers m and r and all primes p.
Let p be an odd prime and let 0 <= k <= p - 1. Let alpha_k = the p-adic limit_{n -> oo} L(p^n,k). Then alpha_k is a well-defined p-adic-integer and the polynomial L(p,x) - x of degree p factorizes as L(p,x) - x = Product_{k = 0..p-1} (x - alpha_k). For example, L(5,x) - x = x^5 + 5*x^3 + 4*x = x*(x - A269591)*(x - A210850)*(x - A210851)*(x - A269592) in the ring of 5-adic integers. (End)
The formula for L(n,x) given in the first line of the preceding section, with L(0, x) = 2, is rewritten L(n, x) = Sum_{k = 0..floor(n/2)} A034807(n, k)*x^(n - 2*k). See the formula by Alexander Elkins in A034807. - Wolfdieter Lang, Feb 10 2023

A127670 Discriminants of Chebyshev S-polynomials A049310.

Original entry on oeis.org

1, 4, 32, 400, 6912, 153664, 4194304, 136048896, 5120000000, 219503494144, 10567230160896, 564668382613504, 33174037869887488, 2125764000000000000, 147573952589676412928, 11034809241396899282944, 884295678882933431599104, 75613185918270483380568064
Offset: 1

Views

Author

Wolfdieter Lang, Jan 23 2007

Keywords

Comments

a(n-1) is the number of fixed n-cell polycubes that are proper in n-1 dimensions (Barequet et al., 2010).
From Rigoberto Florez, Sep 02 2018: (Start)
a(n-1) is the discriminant of the Morgan-Voyce Fibonacci-type polynomial B(n).
Morgan-Voyce Fibonacci-type polynomials are defined as B(0) = 0, B(1) = 1 and B(n) = (x+2)*B(n-1) - B(n-2) for n > 1.
The absolute value of the discriminant of Fibonacci polynomial F(n) is a(n-1).
Fibonacci polynomials are defined as F(0) = 0, F(1) = 1 and F(n) = x*F(n-1) + F(n-2) for n > 1. (End)
The first 6 values are the dimensions of the polynomial ring in 3n variables xi, yi, zi for 1 <= i <= n modulo the ideal generated by x1^a y1^b z1^c + ... + xn^a yn^b zn^c for 0 < a+b+c <= n (see Fact 2.8.1 in Haiman's paper). - Mike Zabrocki, Dec 31 2019

Examples

			n=3: The zeros are [sqrt(2),0,-sqrt(2)]. The Vn(xn[1],...,xn[n]) matrix is [[1,1,1],[sqrt(2),0,-sqrt(2)],[2,0,2]]. The squared determinant is 32 = a(3). - _Wolfdieter Lang_, Aug 07 2011
		

References

  • Gill Barequet, Solomon W. Golomb, and David A. Klarner, Polyominoes. (This is a revision, by G. Barequet, of the chapter of the same title originally written by the late D. A. Klarner for the first edition, and revised by the late S. W. Golomb for the second edition.) Preprint, 2016, http://www.csun.edu/~ctoth/Handbook/chap14.pdf.
  • G. Barequet and M. Shalah, Automatic Proofs for Formulae Enumerating Proper Polycubes, 31st International Symposium on Computational Geometry (SoCG'15). Editors: Lars Arge and János Pach; pp. 19-22, 2015.
  • Theodore J. Rivlin, Chebyshev polynomials: from approximation theory to algebra and number theory, 2. ed., Wiley, New York, 1990; p. 219 for T and U polynomials.

Crossrefs

Cf. A007701 (T-polynomials), A086804 (U-polynomials), A171860 and A191092 (fixed n-cell polycubes proper in n-2 and n-3 dimensions, resp.).
A317403 is essentially the same sequence.
Diagonal 1 of A195739.

Programs

  • Magma
    [((n+1)^n/(n+1)^2)*2^n: n in [1..20]]; // Vincenzo Librandi, Jun 23 2014
  • Mathematica
    Table[((n + 1)^n)/(n + 1)^2 2^n, {n, 1, 30}] (* Vincenzo Librandi, Jun 23 2014 *)

Formula

a(n) = ((n+1)^(n-2))*2^n, n >= 1.
a(n) = (Det(Vn(xn[1],...,xn[n])))^2 with the determinant of the Vandermonde matrix Vn with elements (Vn)i,j:= xn[i]^j, i=1..n, j=0..n-1 and xn[i]:=2*cos(Pi*i/(n+1)), i=1..n, are the zeros of S(n,x):=U(n,x/2).
a(n) = ((-1)^(n*(n-1)/2))*Product_{j=1..n} ((d/dx)S(n,x)|_{x=xn[j]}), n >= 1, with the zeros xn[j], j=1..n, given above.
a(n) = A007830(n-2)*A000079(n), n >= 2. - Omar E. Pol, Aug 27 2011
E.g.f.: -LambertW(-2*x)*(2+LambertW(-2*x))/(4*x). - Vaclav Kotesovec, Jun 22 2014

Extensions

Slightly edited by Gill Barequet, May 24 2011

A099920 a(n) = (n+1)*F(n), F(n) = Fibonacci numbers A000045.

Original entry on oeis.org

0, 2, 3, 8, 15, 30, 56, 104, 189, 340, 605, 1068, 1872, 3262, 5655, 9760, 16779, 28746, 49096, 83620, 142065, 240812, 407353, 687768, 1159200, 1950650, 3277611, 5499704, 9216519, 15426870, 25793240, 43080608, 71884197, 119835652
Offset: 0

Views

Author

Paul Barry and Ralf Stephan, Oct 15 2004

Keywords

Comments

A Fibonacci-Lucas convolution.
The number of edges in the Lucas cube L_(n+1) [Klavzar]. - R. J. Mathar, Nov 05 2008
Sums of rows of the triangle in A108037. - Reinhard Zumkeller, Oct 07 2012
a(n-1) is the total binary weight of all bimultus bitstrings of length n. A bitstring is bimultus if each of its 1's possess at least one neighboring 1 and each of its 0's possess at least one neighboring 0. - Steven Finch, May 26 2020

References

  • A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, id. 35.

Crossrefs

Equals A010049(n) + A001629(n+1).

Programs

  • Haskell
    a099920 n = a099920_list !! n
    a099920_list = zipWith (*) [1..] a000045_list
    -- Reinhard Zumkeller, Oct 07 2012
    
  • Magma
    [(n+1)*Fibonacci(n): n in [0..60]]; // Vincenzo Librandi, Apr 23 2011
    
  • Mathematica
    Table[(n + 1) Fibonacci[n], {n, 0, 40}] (* Harvey P. Dale, Jan 18 2012 *)
    LinearRecurrence[{2, 1, -2, -1}, {0, 2, 3, 8}, 40] (* Harvey P. Dale, Jan 18 2012 *)
    CoefficientList[Series[(2 - x) x/(-1 + x + x^2)^2, {x, 0, 20}], x] (* Eric W. Weisstein, Jul 28 2023 *)
  • PARI
    a(n)=(n+1)*fibonacci(n) \\ Charles R Greathouse IV, Jun 11 2015

Formula

G.f.: x*(2-x)/(1-x-x^2)^2;
a(n) = Sum_{k=0..n} F(n-k)*(L(k-1) + 0^k).
a(n) = Sum_{k=0..n+1} F(n-k)*binomial(n-k+1, k)*binomial(1, (k+1)/2)*(1-(-1)^k)/2.
a(n) = 2*a(n-1) + a(n-2) - 2*a(n-3) - a(n-4); a(0)=0, a(1)=2, a(2)=3, a(3)=8. - Harvey P. Dale, Jan 18 2012
a(n) = a(n-1) + a(n-2) + A000032(n-1) (Lucas numbers). - Bob Selcoe, Aug 19 2015
a(n) = 2*A001629(n+1) - A001629(n). - R. J. Mathar, Feb 04 2022

Extensions

Entry revised by N. J. A. Sloane, Jan 23 2006. The offset changed, so some of the formulas may now be slightly off.

A004798 Convolution of Fibonacci numbers 1,2,3,5,... with themselves.

Original entry on oeis.org

1, 4, 10, 22, 45, 88, 167, 310, 566, 1020, 1819, 3216, 5645, 9848, 17090, 29522, 50793, 87080, 148819, 253610, 431086, 731064, 1237175, 2089632, 3523225, 5930668, 9968122, 16730830, 28045221, 46954360, 78524159, 131181406, 218933030, 365044788, 608135635, 1012268592
Offset: 1

Views

Author

Keywords

Comments

From Emeric Deutsch, Feb 15 2010: (Start)
a(n) is the number of subwords of the form 0000 in all binary words of length n+3 that have no pair of adjacent 1's. Example: a(2)=4 because in the 13 (=A000045(7)) binary words of length 5 that have no pair of adjacent 1's, namely 00000, 00001, 00010, 00100, 00101, 01000, 01001, 01010, 10000, 10001, 10010, 10100, 10101, we have 2 + 1 + 0 + 0 + 0 + 0 + 0 + 0 + 1 + 1 + 0 + 0 + 0 = 4 subwords of the form 0000.
a(n) = Sum_{k>=0} k*A171855(n + 3,k). (End)
a(n) is the total number of 0's in all binary words of length n that have no pair of adjacent 1's. Example: a(5) = 45 because in the binary words listed in the above example there are respectively 5 + 4 + 4 + 4 + 3 + 4 + 3 + 3 + 4 + 3 + 3 + 3 + 2 = 45. - Geoffrey Critzer, Jul 22 2013

Examples

			a(6) = 45 + 22 + A000045(6+2) = 45 + 22 + 21 = 88. - _Philippe Deléham_, Jan 22 2012
		

Crossrefs

Programs

  • GAP
    List([1..40], n-> (n*Lucas(1,-1,n+3)[2] - 2*Fibonacci(n))/5); # G. C. Greubel, Jul 07 2019
  • Magma
    I:=[1,4,10,22]; [n le 4 select I[n] else 2*Self(n-1)+Self(n-2)-2*Self(n-3)-Self(n-4): n in [1..40]]; // Vincenzo Librandi, Apr 08 2018
    
  • Maple
    a:= n-> (<<0|1|0|0>, <0|0|1|0>, <0|0|0|1>, <-1|-2|1|2>>^n. <<0, 1, 4, 10>>)[1, 1]:
    seq(a(n), n=1..40);  # Alois P. Heinz, Jul 04 2013
    # Alternative:
    a := n -> n*(hypergeom([-(n+1)/2,-n/2],[-n-1],-4) - hypergeom([(1-n)/2,1-n/2],[-n], -4)): seq(simplify(a(n)), n=1..40); # Peter Luschny, Apr 10 2018
  • Mathematica
    nn=40; Drop[CoefficientList[Series[D[(1+x)/(1-y x -y x^2),y]/.y->1,{x,0,nn}],x],1] (* Geoffrey Critzer, Jul 22 2013 *)
    Table[n Fibonacci[n] + 2/5 (n LucasL[n] - Fibonacci[n]), {n, 40}] (* Vladimir Reshetnikov, Sep 27 2016 *)
    a[n_] := ListConvolve[f = Fibonacci[Range[2, n+1]], f][[1]]; Array[a, 40] (* Jean-François Alcover, Feb 15 2018 *)
    LinearRecurrence[{2, 1, -2, -1}, {1, 4, 10, 22}, 40] (* Vincenzo Librandi, Apr 08 2014 *)
  • PARI
    Vec(((1+x)/(1-x-x^2))^2+O(x^66)) \\ Joerg Arndt, Jul 04 2013
    
  • Sage
    [(n*lucas_number2(n+3,1,-1) - 2*fibonacci(n))/5 for n in (1..40)] # G. C. Greubel, Jul 07 2019
    

Formula

O.g.f.: (x+1)^2*x/(1-x-x^2)^2. - Len Smiley, Dec 11 2001
a(n) = a(n-1) + a(n-2) + Fibonacci(n+2). - Philippe Deléham, Jan 22 2012
O.g.f. is the derivative of A(x,y) with respect to y and then evaluated at y = 1, where A(x,y) is the o.g.f. for A030528. - Geoffrey Critzer, Jul 22 2013
a(n) = A001629(n+1) + A001629(n-1) + 2*A001629(n). - R. J. Mathar, Oct 30 2015
a(n) = n*Fibonacci(n) + (2/5)*(n*Lucas(n) - Fibonacci(n)) = A045925(n) + 2*A001629(n), where Lucas = A000032, Fibonacci = A000045. - Vladimir Reshetnikov, Sep 27 2016
a(n) = Sum_{i=0..floor((n+1)/2)} binomial(n+1-i,i)*(n-i). - John M. Campbell, Apr 07 2018
From Peter Luschny, Apr 10 2018: (Start)
a(n) = n*(hypergeom([-(n+1)/2, -n/2], [-n - 1], -4) - hypergeom([(1-n)/2, 1 - n/2], [-n], -4)).
a(n) = n*A000045(n+2) - A001629(n+1). (End)
E.g.f.: exp(x/2)*(35*x*cosh(sqrt(5)*x/2) + sqrt(5)*(15*x - 4)*sinh(sqrt(5)*x/2))/25. - Stefano Spezia, Dec 04 2023

A065220 a(n) = Fibonacci(n) - n.

Original entry on oeis.org

0, 0, -1, -1, -1, 0, 2, 6, 13, 25, 45, 78, 132, 220, 363, 595, 971, 1580, 2566, 4162, 6745, 10925, 17689, 28634, 46344, 75000, 121367, 196391, 317783, 514200, 832010, 1346238, 2178277, 3524545, 5702853, 9227430, 14930316, 24157780, 39088131, 63245947, 102334115, 165580100, 267914254
Offset: 0

Views

Author

Henry Bottomley, Oct 22 2001

Keywords

Comments

E(n) = Fib(n+4)-(n+4): cost of maximum height Huffman tree of size n for Fibonacci sequence (Fibonacci sequence is minimizing absolutely ordered sequence of Huffman tree). - Alex Vinokur (alexvn(AT)barak-online.net), Oct 26 2004

References

  • Vinokur A.B, Huffman trees and Fibonacci numbers, Kibernetika Issue 6 (1986) 9-12 (in Russian); English translation in Cybernetics 21, Issue 6 (1986), 692-696.

Crossrefs

Programs

  • GAP
    List([0..50], n-> Fibonacci(n) - n); # G. C. Greubel, Jul 09 2019
  • Haskell
    a065220 n = a065220_list !! n
    a065220_list = zipWith (-) a000045_list [0..]
    -- Reinhard Zumkeller, Nov 06 2012
    
  • Magma
    [Fibonacci(n) - n: n in [0..50]]; // G. C. Greubel, Jul 09 2019
    
  • Maple
    a[0]:=0:a[1]:=1:for n from 2 to 50 do a[n]:=a[n-1]+a[n-2] od: seq(a[n]-n, n=0..42); # Zerinvary Lajos, Mar 20 2008
  • Mathematica
    lst={};Do[f=Fibonacci[n]-n;AppendTo[lst,f],{n,0,5!}];lst (* Vladimir Joseph Stephan Orlovsky, Mar 21 2009 *)
    Table[Fibonacci[n]-n,{n,0,50}] (* or *) LinearRecurrence[{3,-2,-1,1},{0,0,-1,-1},50] (* Harvey P. Dale, May 29 2017 *)
  • PARI
    a(n) = { fibonacci(n) - n } \\ Harry J. Smith, Oct 14 2009
    
  • Sage
    [fibonacci(n) - n for n in (0..50)] # G. C. Greubel, Jul 09 2019
    

Formula

a(n) = A000045(n) - A001477(n) = A000126(n-3) - 2 = A001924(n-4) - 1.
a(n) = a(n-1) + a(n-2) + n - 3 = a(n-1) + A000071(n-2).
G.f.: x^2*(2x-1)/((1-x-x^2)*(1-x)^2).
a(n) = Sum_{i=0..n} (i - 2)*F(n-i) for F(n) the Fibonacci sequence A000045. - Greg Dresden, Jun 01 2022

A014286 a(n) = Sum_{j=0..n} j*Fibonacci(j).

Original entry on oeis.org

0, 1, 3, 9, 21, 46, 94, 185, 353, 659, 1209, 2188, 3916, 6945, 12223, 21373, 37165, 64314, 110826, 190265, 325565, 555431, 945073, 1604184, 2717016, 4592641, 7748859, 13052145, 21950853, 36863494, 61824694, 103559033, 173264921, 289575995, 483474153
Offset: 0

Views

Author

Keywords

Comments

Equals row sums of triangle A143061. - Gary W. Adamson, Jul 20 2008

Crossrefs

Cf. A000045.
Cf. A143061.
Partial sums of A045925.
Cf. A282464: partial sums of j*Fibonacci(j)^2.

Programs

  • GAP
    List([0..50], n-> n*Fibonacci(n+2)-Fibonacci(n+3)+2); # G. C. Greubel, Jun 13 2019
  • Magma
    [n*Fibonacci(n+2)-Fibonacci(n+3)+2: n in [0..50]]; // Vincenzo Librandi, Mar 31 2011
    
  • Maple
    A014286 := proc(n)
        add(i*combinat[fibonacci](i),i=0..n) ;
    end proc: # R. J. Mathar, Apr 11 2016
  • Mathematica
    Accumulate[Table[Fibonacci[n]*n, {n, 0, 50}]] (* Vladimir Joseph Stephan Orlovsky, Jun 28 2011 *)
    a[0] = 0; a[1] = 1; a[2] = 3; a[3] = 9; a[n_] := a[n] = 2 a[n-1] + a[n-2] - 2 a[n-3] - a[n-4] + 2; Table[a[n], {n, 0, 50}] (* Vladimir Reshetnikov, Oct 28 2015 *)
  • PARI
    concat(0, Vec(x*(1+x^2)/((1-x)*(1-x-x^2)^2) + O(x^50))) \\ Altug Alkan, Oct 28 2015
    
  • Sage
    [n*fibonacci(n+2)-fibonacci(n+3)+2 for n in (0..50)] # G. C. Greubel, Jun 13 2019
    

Formula

G.f.: x*(1+x^2)/((1-x)*(1-x-x^2)^2).
a(n) = n*F(n+2) - F(n+3) + 2.
Recurrences, from Vladimir Reshetnikov, Oct 28 2015: (Start)
6-term, homogeneous, constant coefficients: a(0) = 0, a(1) = 1, a(2) = 3, a(3) = 9, a(4) = 21, a(n) = 3*a(n-1) - a(n-2) - 3*a(n-3) + a(n-4) + a(n-5).
5-term, non-homogeneous, constant coefficients: a(0) = 0, a(1) = 1, a(2) = 3, a(3) = 9, a(n) = 2*a(n-1) + a(n-2) - 2*a(n-3) - a(n-4) + 2. (End)

A007502 Les Marvin sequence: a(n) = F(n) + (n-1)*F(n-1), F() = Fibonacci numbers.

Original entry on oeis.org

1, 2, 4, 9, 17, 33, 61, 112, 202, 361, 639, 1123, 1961, 3406, 5888, 10137, 17389, 29733, 50693, 86204, 146246, 247577, 418299, 705479, 1187857, 1997018, 3352636, 5621097, 9412937, 15744681, 26307469, 43912648
Offset: 1

Views

Author

Keywords

Comments

Denominators of convergents of the continued fraction with the n partial quotients: [1;1,1,...(n-1 1's)...,1,n], starting with [1], [1;2], [1;1,3], [1;1,1,4], ... Numerators are A088209(n-1). - Paul D. Hanna, Sep 23 2003

Examples

			a(7) = F(7) + 6*F(6) = 13 + 6*8 = 61.
		

References

  • Les Marvin, Problem, J. Rec. Math., Vol. 10 (No. 3, 1976-1977), p. 213.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000045, A045925, A088209 (numerators), A101220, A109754.

Programs

  • Haskell
    a007502 n = a007502_list !! (n-1)
    a007502_list = zipWith (+) a045925_list $ tail a000045_list
    -- Reinhard Zumkeller, Oct 01 2012, Mar 04 2012
    
  • Julia
    # The function 'fibrec' is defined in A354044.
    function A007502(n)
        n == 0 && return BigInt(1)
        a, b = fibrec(n-1)
        (n-1)*a + b
    end
    println([A007502(n) for n in 1:32]) # Peter Luschny, May 18 2022
    
  • Magma
    A007502:= func< n | Fibonacci(n) +(n-1)*Fibonacci(n-1) >;
    [A007502(n): n in [1..40]]; // G. C. Greubel, Aug 26 2025
    
  • Mathematica
    Table[Fibonacci[n]+(n-1)*Fibonacci[n-1], {n,40}] (* or *) LinearRecurrence[ {2,1,-2,-1}, {1,2,4,9}, 40](* Harvey P. Dale, Jul 13 2011 *)
    f[n_] := Denominator@  FromContinuedFraction@ Join[ Table[1, {n}], {n + 1}]; Array[f, 30, 0] (* Robert G. Wilson v, Mar 04 2012 *)
  • PARI
    Vec((1-x^2+x^3)/(1-x-x^2)^2+O(x^99)) \\ Charles R Greathouse IV, Mar 04 2012
    
  • SageMath
    def A007502(n): return fibonacci(n) +(n-1)*fibonacci(n-1)
    print([A007502(n) for n in range(1,41)]) # G. C. Greubel, Aug 26 2025

Formula

G.f.: (1-x^2+x^3)/(1-x-x^2)^2. - Paul D. Hanna, Sep 23 2003
a(n+1) = A109754(n, n+1) = A101220(n, 0, n+1). - N. J. A. Sloane, May 19 2006
a(n) = 2*a(n-1) + a(n-2) - 2*a(n-3) - a(n-4) for n>3, a(0)=1, a(1)=2, a(2)=4, a(3)=9. - Harvey P. Dale, Jul 13 2011
E.g.f.: exp(x/2)*( ((3 + 2*x)/sqrt(5))*sinh(sqrt(5)*x/2) - cosh(sqrt(5)*x/2) ) + 1. - G. C. Greubel, Aug 26 2025

A088209 Numerators of convergents of the continued fraction with the n+1 partial quotients: [1;1,1,...(n 1's)...,1,n+1], starting with [1], [1;2], [1;1,3], [1;1,1,4], ...

Original entry on oeis.org

1, 3, 7, 14, 28, 53, 99, 181, 327, 584, 1034, 1817, 3173, 5511, 9527, 16402, 28136, 48109, 82023, 139481, 236631, 400588, 676822, 1141489, 1921993, 3231243, 5424679, 9095126, 15230452, 25475429, 42566379, 71052157, 118489383
Offset: 0

Views

Author

Paul D. Hanna, Sep 23 2003

Keywords

Comments

Denominators form the Les Marvin sequence: A007502(n+1).

Examples

			a(3)/A007502(4) = [1;1,1,4] = 14/9.
		

Crossrefs

a(n) = A109754(n, n+2) = A101220(n, 0, n+2).
Cf. A007502 (the denominators), A000045, A045925.

Programs

  • Haskell
    a088209 n = a088209_list !! n
    a088209_list = zipWith (+) a000045_list $ tail a045925_list
    -- Reinhard Zumkeller, Oct 01 2012, Mar 04 2012
    
  • Julia
    # The function 'fibrec' is defined in A354044.
    function A088209(n)
        n == 0 && return BigInt(1)
        a, b = fibrec(n)
        a + (n + 1)*b
    end
    println([A088209(n) for n in 0:32]) # Peter Luschny, May 18 2022
  • Mathematica
    f[n_] := Numerator@  FromContinuedFraction@ Join[ Table[1, {n}], {n + 1}]; Array[f, 30, 0] (* Robert G. Wilson v, Mar 04 2012 *)
    CoefficientList[Series[(1+x-x^3)/(-1+x+x^2)^2,{x,0,40}],x] (* or *) LinearRecurrence[{2,1,-2,-1},{1,3,7,14},40] (* Harvey P. Dale, Jul 13 2021 *)

Formula

G.f.: (1+x-x^3)/(1-x-x^2)^2. [Corrected by Georg Fischer, Aug 16 2021]
a(n) = Fibonacci(n) + (n+1)*Fibonacci(n+1). - Paul Barry, Apr 20 2004
a(n) = a(n-1) + a(n-2) + Lucas(n). - Yuchun Ji, Apr 23 2023

A104509 Matrix inverse of triangle A104505, which is the right-hand side of triangle A084610 of coefficients in (1 + x - x^2)^n.

Original entry on oeis.org

1, 1, -1, 3, -2, 1, 4, -6, 3, -1, 7, -12, 10, -4, 1, 11, -25, 25, -15, 5, -1, 18, -48, 60, -44, 21, -6, 1, 29, -91, 133, -119, 70, -28, 7, -1, 47, -168, 284, -296, 210, -104, 36, -8, 1, 76, -306, 585, -699, 576, -342, 147, -45, 9, -1, 123, -550, 1175, -1580, 1485, -1022, 525, -200, 55, -10, 1, 199, -979, 2310, -3454, 3641
Offset: 0

Views

Author

Paul D. Hanna, Mar 11 2005

Keywords

Comments

Riordan array ( (1 + x^2)/(1 - x - x^2), -x/(1 - x - x^2) ) belonging to the hitting time subgroup of the Riordan group (see Peart and Woan). - Peter Bala, Jun 29 2015
The sums of absolute values along steep diagonals in this triangle are: 1, 1, 3, 4 + |-1|, 7 + |-2|, 11 + |-6|, 18 + |-12| + 1, ... and these are the tribonacci numbers A000213 that begin with 1, 1, 1, 3. To see this, replace the y in the g.f. A(x,y) = (1 + x^2)/(1-x-x^2 + x*y) with y=-x^2, multiply by x, and add 1, to obtain the g.f. (1 - x^2)/(1-x-x^2-x^3) for A000213. - Noah Carey and Greg Dresden, Nov 02 2021

Examples

			Rows begin:
   1;
   1,   -1;
   3,   -2,   1;
   4,   -6,   3,   -1;
   7,  -12,  10,   -4,   1;
  11,  -25,  25,  -15,   5,   -1;
  18,  -48,  60,  -44,  21,   -6,   1;
  29,  -91, 133, -119,  70,  -28,   7,  -1;
  47, -168, 284, -296, 210, -104,  36,  -8, 1;
  76, -306, 585, -699, 576, -342, 147, -45, 9, -1; ...
		

Crossrefs

Leftmost column is A000204 (Lucas numbers). Other columns include: A045925, A067988. Row sums are: {1,0,2,0,2,0,2,...}. Absolute row sums form: A099425. Antidiagonal sums are: {1,1,2,2,2,2,2,...}. Absolute antidiagonal sums are: A084214.

Programs

  • Maple
    S:= series((1 + x^2)/(1-x-x^2 + x*y),x, 20):
    for n from 0 to 19 do R[n]:= coeff(S,x,n) od:
    seq(seq(coeff(R[n],y,j),j=0..n), n=0..19); # Robert Israel, Jun 30 2015
  • Mathematica
    nmax = 11;
    T[n_, k_] := Coefficient[(1 + x - x^2)^n, x, n + k];
    M = Table[T[n, k], {n, 0, nmax}, {k, 0, nmax}] // Inverse;
    Table[M[[n+1, k+1]], {n, 0, nmax}, {k, 0, n}] // Flatten (* Jean-François Alcover, Mar 27 2019 *)
  • PARI
    { T(n,k) = my(X=x+x*O(x^n),Y=y+y*O(y^k)); polcoeff(polcoeff((1 + X^2)/(1-X-X^2 + X*Y),n,x),k,y); }
    
  • PARI
    { tabl(nn) = my(m = matrix(nn, nn, n, k, n--; k--; if((nMichel Marcus, Jun 30 2015
    
  • PARI
    { A104509(n,k) = if(n==0, k==0, (-1)^k * sum(i=0, (n-k)\2, n/(n-i) * binomial(n-k-i,i) * binomial(n-i,k) )); } \\ Max Alekseyev, Oct 11 2021

Formula

For n>=1, a(n,k) = (-1)^k * Sum_{i=0..[(n-k)/2]} n/(n-i) * binomial(n-i,i) * binomial(n-2*i,k) = (-1)^k * Sum_{i=0..[(n-k)/2]} n/(n-i) * binomial(n-k-i,i) * binomial(n-i,k). - Max Alekseyev, Oct 11 2021
G.f.: A(x, y) = (1 + x^2)/(1-x-x^2 + x*y).
G.f. for column k: g_k(x) = -(x^2+1)*x^k/(x^2+x-1)^(k+1). - Robert Israel, Jun 30 2015
G.f. for row n>=1 is the Lucas polynomial L_n(1-x). - Max Alekseyev, Oct 11 2021
Showing 1-10 of 28 results. Next