cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A309220 Square array A read by antidiagonals: the columns are given by A(n,1)=1, A(n,2)=n+1, A(n,3) = n^2+2n+3, A(n,4) = n^3+3*n^2+6*n+4, A(n,5) = n^4+4*n^3+10*n^2+12*n+7, ..., whose coefficients are given by A104509 (see also A118981).

Original entry on oeis.org

1, 1, 2, 1, 3, 6, 1, 4, 11, 14, 1, 5, 18, 36, 34, 1, 6, 27, 76, 119, 82, 1, 7, 38, 140, 322, 393, 198, 1, 8, 51, 234, 727, 1364, 1298, 478, 1, 9, 66, 364, 1442, 3775, 5778, 4287, 1154, 1, 10, 83, 536, 2599, 8886, 19602, 24476, 14159, 2786, 1, 11, 102, 756, 4354, 18557
Offset: 1

Views

Author

N. J. A. Sloane, Aug 12 2019, based on R. J. Mathar's 2011 analysis of A118980

Keywords

Comments

As pointed out by Peter Munn, A117938 gives the same triangle, except that it has an additional diagonal at the right. - N. J. A. Sloane, Aug 13 2019

Examples

			The first few antidiagonals are:
1,
1,2,
1,3,6,
1,4,11,14,
1,5,18,36,34,
1,6,27,76,119,82,
1,7,38,140,322,393,198,
...
The first nine rows of A are
1, 2, 6, 14, 34, 82, 198, 478, 1154, 2786, 6726, 16238, ...
1, 3, 11, 36, 119, 393, 1298, 4287, 14159, 46764, 154451, 510117, ...
1, 4, 18, 76, 322, 1364, 5778, 24476, 103682, 439204, 1860498, 7881196, ...
1, 5, 27, 140, 727, 3775, 19602, 101785, 528527, 2744420, 14250627, 73997555, ...
1, 6, 38, 234, 1442, 8886, 54758, 337434, 2079362, 12813606, 78960998, 486579594, ...
1, 7, 51, 364, 2599, 18557, 132498, 946043, 6754799, 48229636, 344362251, 2458765393, ...
1, 8, 66, 536, 4354, 35368, 287298, 2333752, 18957314, 153992264, 1250895426, 10161155672, ...
1, 9, 83, 756, 6887, 62739, 571538, 5206581, 47430767, 432083484, 3936182123, 35857722591, ...
1, 10, 102, 1030, 10402, 105050, 1060902, 10714070, 108201602, 1092730090, 11035502502, 111447755110, ...
		

Crossrefs

Cf. A104509, A117938, A118980, A118981, A099425 (top row), A006497 (essentially the 2nd row), A014448 (essentially the 3rd row), A087130 (essentially the 4th row).

Programs

  • Maple
    M := 12;
    A:=Array(1..2*M,1..2*M,0):
    for i from 1 to M do A[i,1]:=1; od:
    S := series((1 + x^2)/(1-x-x^2 + x*y), x, 120): # this is g.f. for A104509
    for n from 1 to M do
    R2 := expand(coeff(S, x, n));
    R3 := [seq(abs(coeff(R2,y,n-i)),i=0..n)];
    f := k-> add( R3[i]*k^(n-i+1), i=1..nops(R3) ): # this is the formula for the (n+1)-st column
    s1 := [seq(f(i),i=1..M)];
    for i from 1 to M do A[i,n+1]:=s1[i]; od:
    od:
    for i from 1 to M do lprint([seq(A[i,j],j=1..M)]); od:
    # alternative by R. J. Mathar, Aug 13 2019 :
    A104509 := proc(n,k)
        (1+x^2)/(1-x-x^2+x*y) ;
        coeftayl(%,x=0,n) ;
        coeftayl(%,y=0,k) ;
    end proc:
    A309220 := proc(n::integer,k::integer)
        local x;
        add( abs(A104509(k-1,i))*x^i,i=0..k-1) ;
        subs(x=n,%) ;
    end proc:
    seq( seq(A309220(d-k,k),k=1..d-1),d=2..13) ;

A118981 Triangle read by rows: T(n,k) = abs( A104509(n-1,n-k) ).

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 1, 3, 6, 4, 1, 4, 10, 12, 7, 1, 5, 15, 25, 25, 11, 1, 6, 21, 44, 60, 48, 18, 1, 7, 28, 70, 119, 133, 91, 29, 1, 8, 36, 104, 210, 296, 284, 168, 47, 1, 9, 45, 147, 342, 576, 699, 585, 306, 76, 1, 10, 55, 200, 525, 1022, 1485, 1580, 1175, 550, 123
Offset: 1

Views

Author

Gary W. Adamson, May 07 2006

Keywords

Comments

The old definition was: "Companion Pell polynomials, as a triangle."

Examples

			First few rows of the triangle:
  1;
  1, 1;
  1, 2,  3;
  1, 3,  6,  4;
  1, 4, 10, 12,  7;
  1, 5, 15, 25, 25, 11;
  ...
Polynomials: (1), (x + 1), (x^2 + 2x + 3), (x^3 + 3x^2 + 6x + 4), ...
Row 3: (1, 2, 3); as (x^2 + 2x + 3) = f(x), (x=1,2,3,...) of column 3 of A309220: (6, 11, 18, 27, 38, 51,...). The latter sequence = binomial transform of row 3 of A118980: (6, 5, 2).
		

Crossrefs

Programs

  • Mathematica
    Flatten[Map[Reverse,CoefficientList[CoefficientList[Series[(1 + x^2)/(1-x-x^2 - x*y), {x,0,8}], x], y]]] (* Georg Fischer, Aug 13 2019 *)
  • PARI
    {T(n, k) = polcoeff(polcoeff((1 + x^2)/(1 - x - x^2 - x*y) + x*O(x^n), n), n-k)}; /* Michael Somos, Oct 10 2021 */
    
  • PARI
    { A118981(n,k) = if(n==0, k==0, sum(i=0,k\2, n/(n-i) * binomial(k-i,i) * binomial(n-i,n-k) )); } \\ Max Alekseyev, Oct 11 2021

Formula

For n >= 1, T(n,k) = Sum_{i=0..floor(k/2)} n/(n-i) * binomial(n-i,i) * binomial(n-2*i,n-k) = Sum_{i=0..floor(k/2)} (n/(n-i)) * binomial(k-i,i) * binomial(n-i,n-k). - Max Alekseyev, Oct 11 2021
G.f.: (1 + x^2)/(1-x-x^2 - x*y) (columns in reverse order). - Georg Fischer, Aug 13 2019
G.f. for row n >= 1 is the reciprocal of Lucas polynomial L_n(1+x). - Max Alekseyev, Oct 11 2021

Extensions

Edited by N. J. A. Sloane, Aug 12 2019, replacing old definition by explicit formula from R. J. Mathar, Oct 30 2011
a(22)-a(62) from Georg Fischer, Aug 13 2019
More terms from Michel Marcus, Oct 11 2021

A117938 Triangle, columns generated from Lucas Polynomials.

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 1, 3, 6, 4, 1, 4, 11, 14, 7, 1, 5, 18, 36, 34, 11, 1, 6, 27, 76, 119, 82, 18, 1, 7, 38, 140, 322, 393, 198, 29, 1, 8, 51, 234, 727, 1364, 1298, 478, 47, 1, 9, 66, 364, 1442, 3775, 5778, 4287, 1154, 76, 1, 10, 83, 536, 2599, 8886, 19602, 24476, 14159, 2786, 123
Offset: 1

Views

Author

Gary W. Adamson, Apr 03 2006

Keywords

Comments

Companion triangle using Fibonacci polynomial generators = A073133. Inverse binomial transforms of the columns defines rows of A117937 (with some adjustments of offset).
A309220 is another version of the same triangle (except it omits the last diagonal), and perhaps has a clearer definition. - N. J. A. Sloane, Aug 13 2019

Examples

			First few rows of the triangle are:
  1;
  1, 1;
  1, 2,  3;
  1, 3,  6,   4;
  1, 4, 11,  14,   7;
  1, 5, 18,  36,  34,  11;
  1, 6, 27,  76, 119,  82,  18;
  1, 7, 38, 140, 322, 393, 198, 29;
  ...
For example, T(7,4) = 76 = f(4), x^3 + 3*x = 64 + 12 = 76.
		

Crossrefs

Cf. A000204 (diagonal), A059100 (column 3), A061989 (column 4).

Programs

  • Maple
    Lucas := proc(n,x) # see A114525
        option remember;
        if  n=0 then
            2;
        elif n =1 then
            x ;
        else
            x*procname(n-1,x)+procname(n-2,x) ;
        end if;
        expand(%) ;
    end proc:
    A117938 := proc(n::integer,k::integer)
        if k = 1 then
            1;
        else
            subs(x=n-k+1,Lucas(k-1,x)) ;
        end if;
    end proc:
    seq(seq(A117938(n,k),k=1..n),n=1..12) ; # R. J. Mathar, Aug 16 2019
  • Mathematica
    T[n_, k_]:= LucasL[k-1, n-k+1] - Boole[k==1];
    Table[T[n, k], {n, 12}, {k, n}]//Flatten (* G. C. Greubel, Oct 28 2021 *)
  • Sage
    def A117938(n,k): return 1 if (k==1) else round(2^(1-k)*( (n-k+1 + sqrt((n-k)*(n-k+2) + 5))^(k-1) + (n-k+1 - sqrt((n-k)*(n-k+2) + 5))^(k-1) ))
    flatten([[A117938(n,k) for k in (1..n)] for n in (1..12)]) # G. C. Greubel, Oct 28 2021

Formula

Columns are f(x), x = 1, 2, 3, ..., of the Lucas Polynomials: (1, defined different from A034807 and A114525); (x); (x^2 + 2); (x^3 + 3*x); (x^4 + 4*x^2 + 2); (x^5 + 5*x^3 + 5*x); (x^6 + 6*x^4 + 9*x^2 + 2); (x^7 + 7*x^5 + 14*x^3 + 7*x); ...

Extensions

Terms a(51) and a(52) corrected by G. C. Greubel, Oct 28 2021

A104505 Triangle, read by rows, equal to the right-hand side of the triangle A084610, with row n listing the coefficients of (1+x-x^2)^n: T(n,k) = [x^(n+k)] (1+x-x^2)^n, for n>=k>=0.

Original entry on oeis.org

1, 1, -1, -1, -2, 1, -5, 0, 3, -1, -5, 8, 2, -4, 1, 11, 15, -10, -5, 5, -1, 41, -6, -30, 10, 9, -6, 1, 29, -77, -14, 49, -7, -14, 7, -1, -125, -120, 112, 56, -70, 0, 20, -8, 1, -365, 117, 288, -126, -126, 90, 12, -27, 9, -1, -131, 770, 45, -540, 90, 228, -105, -30, 35, -10, 1, 1409, 946, -1265, -495, 858, 33, -363, 110, 55, -44
Offset: 0

Views

Author

Paul D. Hanna, Mar 11 2005

Keywords

Comments

Matrix inverse is triangle A104509 and is related to Fibonacci numbers. Column 0 equals A098331, with g.f.: 1/sqrt(1-2*x+5*x^2). Column 1 equals A104506, with g.f.: ((1-x)/sqrt(1-2*x+5*x^2)-1)/(2*x). Row sums equal A104507. Absolute row sums equal A104508.
Array (1/sqrt(1-2x+5x^2), (1-x-sqrt(1-2x+5x^2))/(2x)), in Riordan array notation. Product of A120616 by A007318. - Paul Barry, Jun 17 2006

Examples

			Rows begin:
1;
1,-1;
-1,-2,1;
-5,0,3,-1;
-5,8,2,-4,1;
11,15,-10,-5,5,-1;
41,-6,-30,10,9,-6,1;
29,-77,-14,49,-7,-14,7,-1;
-125,-120,112,56,-70,0,20,-8,1;
-365,117,288,-126,-126,90,12,-27,9,-1;
-131,770,45,-540,90,228,-105,-30,35,-10,1; ...
		

Crossrefs

Programs

  • Mathematica
    T[n_, k_] := Coefficient[(1 + x - x^2)^n, x, n + k];
    Table[T[n, k], {n, 0, 11}, {k, 0, n}] // Flatten (* Jean-François Alcover, Mar 27 2019 *)
  • PARI
    T(n,k)=if(n
    				

Formula

T(n, 0) = A098331(n). T(n, 1) = n*A007440(n) (n>0).
Column k has e.g.f. exp(x)*Bessel_I(k,2*sqrt(-1)x)*(sqrt(-1))^k. - Paul Barry, Jun 17 2006
From Peter Bala, Jun 29 2015: (Start)
Matrix factorization in the Riordan group: ( 1/(1 - x), x/(1 - x) ) * ( 1/sqrt(1 + 4*x^2), (1 - sqrt(1 + 4*x^2))/(2*x) ) = A007318 * signed version of A108044.
Riordan array has the form ( x*h'(x)/h(x), h(x) ) with h(x) = (1 - x - sqrt(1 - 2*x + 5*x^2))/(2*x) and so belongs to the hitting time subgroup H of the Riordan group (see Peart and Woan).
T(n,k) = [x^(n-k)] f(x)^n with f(x) = x^2 + x - 1. In general the (n,k)th entry of the hitting time array ( x*h'(x)/h(x), h(x) ) has the form [x^(n-k)] f(x)^n, where f(x) = x/( series reversion of h(x) ). (End)

A118980 Triangle read by rows: rows = inverse binomial transforms of columns of A309220.

Original entry on oeis.org

1, 2, 1, 6, 5, 2, 14, 22, 18, 6, 34, 85, 118, 84, 24, 82, 311, 660, 780, 480, 120, 198, 1100, 3380, 5964, 6024, 3240, 720, 478, 3809, 16380, 40740, 60480, 52920, 25200, 5040, 1154, 13005, 76518, 258804, 531864, 676080, 519840, 221760, 40320, 2786, 43978, 348462, 1564314, 4286880, 7444800, 8240400
Offset: 1

Views

Author

Gary W. Adamson, May 07 2006

Keywords

Comments

First few columns of A309220:
1, 2, 6, 14, 34, ...
1, 3, 11, 36, 119, ...
1, 4, 18, 76, 322, ...
1, 5, 27, 140, 727, ...
1, 6, 38, 234, 1442, ...
1, 7, 51, 364, 2599, ...
1, 8, 66, 536, 4354, ...
...

Examples

			First few rows of the triangle:
   1;
   2,   1;
   6,   5,   2;
  14,  22,  18,   6;
  34,  85, 118,  84,  24;
  82, 311, 660, 780, 480, 120;
  ...
Column 3 of A309220 = (6, 11, 18, 27, 38, 51, ...), whose inverse binomial transform is (6, 5, 2).
		

Crossrefs

The leading column is A099425, and the rightmost two diagonals are A038720 and A000142.

Programs

  • Maple
    with(transforms);
    M := 12;
    T := [1];
    S := series((1 + x^2)/(1-x-x^2 + x*y), x, 120):
    for n from 1 to M do
    R2 := expand(coeff(S, x, n));
    R3 := [seq(abs(coeff(R2,y,n-i)),i=0..n)];
    f := k-> add( R3[i]*k^(n-i+1), i=1..nops(R3) ):
    s1 := [seq(f(i),i=1..3*n)];
    s2 := BINOMIALi(s1);
    s3 := [seq(s2[i],i=1..n+1)];
    T := [op(T), op(s3)];
    od:
    T;  # N. J. A. Sloane, Aug 12 2019

Extensions

Edited and extended by N. J. A. Sloane, Aug 12 2019, guided by the comments of R. J. Mathar from Oct 30 2011

A104506 Column 1 of triangle A104505, which is equal to the right-hand side of the triangle A084610 of coefficients in (1 + x - x^2)^n.

Original entry on oeis.org

0, -1, -2, 0, 8, 15, -6, -77, -120, 117, 770, 946, -1728, -7735, -6930, 22800, 76960, 42245, -282150, -751640, -125800, 3341205, 7145710, -2002725, -38228232, -65418925, 55550014, 424605078, 566938400, -936604097, -4587287310
Offset: 0

Views

Author

Paul D. Hanna, Mar 11 2005

Keywords

Crossrefs

Programs

  • PARI
    {a(n)=polcoeff(((1-x)/sqrt(1-2*x+5*x^2+x^2*O(x^n))-1)/(2*x),n)}

Formula

G.f.: ((1-x)/sqrt(1-2*x+5*x^2) - 1)/(2*x).
a(n) = (-1)^n*n*A007440(n) (reversion of g.f. for Fibonacci numbers).
a(n) = -Sum_{k=0..floor(n/2)} C(n, k)*C(n-k, k+1)*(-1)^k. - Paul Barry, May 02 2005
E.g.f.: -exp(x)Bessel_I(1,2*i*x)/i, i=sqrt(-1). - Paul Barry, Feb 10 2006
-(n-1)*(n+1)*a(n) + n*(2*n-1)*a(n-1) - 5*n*(n-1)*a(n-2) = 0. - R. J. Mathar, Aug 17 2017
Showing 1-6 of 6 results.