cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A309220 Square array A read by antidiagonals: the columns are given by A(n,1)=1, A(n,2)=n+1, A(n,3) = n^2+2n+3, A(n,4) = n^3+3*n^2+6*n+4, A(n,5) = n^4+4*n^3+10*n^2+12*n+7, ..., whose coefficients are given by A104509 (see also A118981).

Original entry on oeis.org

1, 1, 2, 1, 3, 6, 1, 4, 11, 14, 1, 5, 18, 36, 34, 1, 6, 27, 76, 119, 82, 1, 7, 38, 140, 322, 393, 198, 1, 8, 51, 234, 727, 1364, 1298, 478, 1, 9, 66, 364, 1442, 3775, 5778, 4287, 1154, 1, 10, 83, 536, 2599, 8886, 19602, 24476, 14159, 2786, 1, 11, 102, 756, 4354, 18557
Offset: 1

Views

Author

N. J. A. Sloane, Aug 12 2019, based on R. J. Mathar's 2011 analysis of A118980

Keywords

Comments

As pointed out by Peter Munn, A117938 gives the same triangle, except that it has an additional diagonal at the right. - N. J. A. Sloane, Aug 13 2019

Examples

			The first few antidiagonals are:
1,
1,2,
1,3,6,
1,4,11,14,
1,5,18,36,34,
1,6,27,76,119,82,
1,7,38,140,322,393,198,
...
The first nine rows of A are
1, 2, 6, 14, 34, 82, 198, 478, 1154, 2786, 6726, 16238, ...
1, 3, 11, 36, 119, 393, 1298, 4287, 14159, 46764, 154451, 510117, ...
1, 4, 18, 76, 322, 1364, 5778, 24476, 103682, 439204, 1860498, 7881196, ...
1, 5, 27, 140, 727, 3775, 19602, 101785, 528527, 2744420, 14250627, 73997555, ...
1, 6, 38, 234, 1442, 8886, 54758, 337434, 2079362, 12813606, 78960998, 486579594, ...
1, 7, 51, 364, 2599, 18557, 132498, 946043, 6754799, 48229636, 344362251, 2458765393, ...
1, 8, 66, 536, 4354, 35368, 287298, 2333752, 18957314, 153992264, 1250895426, 10161155672, ...
1, 9, 83, 756, 6887, 62739, 571538, 5206581, 47430767, 432083484, 3936182123, 35857722591, ...
1, 10, 102, 1030, 10402, 105050, 1060902, 10714070, 108201602, 1092730090, 11035502502, 111447755110, ...
		

Crossrefs

Cf. A104509, A117938, A118980, A118981, A099425 (top row), A006497 (essentially the 2nd row), A014448 (essentially the 3rd row), A087130 (essentially the 4th row).

Programs

  • Maple
    M := 12;
    A:=Array(1..2*M,1..2*M,0):
    for i from 1 to M do A[i,1]:=1; od:
    S := series((1 + x^2)/(1-x-x^2 + x*y), x, 120): # this is g.f. for A104509
    for n from 1 to M do
    R2 := expand(coeff(S, x, n));
    R3 := [seq(abs(coeff(R2,y,n-i)),i=0..n)];
    f := k-> add( R3[i]*k^(n-i+1), i=1..nops(R3) ): # this is the formula for the (n+1)-st column
    s1 := [seq(f(i),i=1..M)];
    for i from 1 to M do A[i,n+1]:=s1[i]; od:
    od:
    for i from 1 to M do lprint([seq(A[i,j],j=1..M)]); od:
    # alternative by R. J. Mathar, Aug 13 2019 :
    A104509 := proc(n,k)
        (1+x^2)/(1-x-x^2+x*y) ;
        coeftayl(%,x=0,n) ;
        coeftayl(%,y=0,k) ;
    end proc:
    A309220 := proc(n::integer,k::integer)
        local x;
        add( abs(A104509(k-1,i))*x^i,i=0..k-1) ;
        subs(x=n,%) ;
    end proc:
    seq( seq(A309220(d-k,k),k=1..d-1),d=2..13) ;

A117938 Triangle, columns generated from Lucas Polynomials.

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 1, 3, 6, 4, 1, 4, 11, 14, 7, 1, 5, 18, 36, 34, 11, 1, 6, 27, 76, 119, 82, 18, 1, 7, 38, 140, 322, 393, 198, 29, 1, 8, 51, 234, 727, 1364, 1298, 478, 47, 1, 9, 66, 364, 1442, 3775, 5778, 4287, 1154, 76, 1, 10, 83, 536, 2599, 8886, 19602, 24476, 14159, 2786, 123
Offset: 1

Views

Author

Gary W. Adamson, Apr 03 2006

Keywords

Comments

Companion triangle using Fibonacci polynomial generators = A073133. Inverse binomial transforms of the columns defines rows of A117937 (with some adjustments of offset).
A309220 is another version of the same triangle (except it omits the last diagonal), and perhaps has a clearer definition. - N. J. A. Sloane, Aug 13 2019

Examples

			First few rows of the triangle are:
  1;
  1, 1;
  1, 2,  3;
  1, 3,  6,   4;
  1, 4, 11,  14,   7;
  1, 5, 18,  36,  34,  11;
  1, 6, 27,  76, 119,  82,  18;
  1, 7, 38, 140, 322, 393, 198, 29;
  ...
For example, T(7,4) = 76 = f(4), x^3 + 3*x = 64 + 12 = 76.
		

Crossrefs

Cf. A000204 (diagonal), A059100 (column 3), A061989 (column 4).

Programs

  • Maple
    Lucas := proc(n,x) # see A114525
        option remember;
        if  n=0 then
            2;
        elif n =1 then
            x ;
        else
            x*procname(n-1,x)+procname(n-2,x) ;
        end if;
        expand(%) ;
    end proc:
    A117938 := proc(n::integer,k::integer)
        if k = 1 then
            1;
        else
            subs(x=n-k+1,Lucas(k-1,x)) ;
        end if;
    end proc:
    seq(seq(A117938(n,k),k=1..n),n=1..12) ; # R. J. Mathar, Aug 16 2019
  • Mathematica
    T[n_, k_]:= LucasL[k-1, n-k+1] - Boole[k==1];
    Table[T[n, k], {n, 12}, {k, n}]//Flatten (* G. C. Greubel, Oct 28 2021 *)
  • Sage
    def A117938(n,k): return 1 if (k==1) else round(2^(1-k)*( (n-k+1 + sqrt((n-k)*(n-k+2) + 5))^(k-1) + (n-k+1 - sqrt((n-k)*(n-k+2) + 5))^(k-1) ))
    flatten([[A117938(n,k) for k in (1..n)] for n in (1..12)]) # G. C. Greubel, Oct 28 2021

Formula

Columns are f(x), x = 1, 2, 3, ..., of the Lucas Polynomials: (1, defined different from A034807 and A114525); (x); (x^2 + 2); (x^3 + 3*x); (x^4 + 4*x^2 + 2); (x^5 + 5*x^3 + 5*x); (x^6 + 6*x^4 + 9*x^2 + 2); (x^7 + 7*x^5 + 14*x^3 + 7*x); ...

Extensions

Terms a(51) and a(52) corrected by G. C. Greubel, Oct 28 2021

A118980 Triangle read by rows: rows = inverse binomial transforms of columns of A309220.

Original entry on oeis.org

1, 2, 1, 6, 5, 2, 14, 22, 18, 6, 34, 85, 118, 84, 24, 82, 311, 660, 780, 480, 120, 198, 1100, 3380, 5964, 6024, 3240, 720, 478, 3809, 16380, 40740, 60480, 52920, 25200, 5040, 1154, 13005, 76518, 258804, 531864, 676080, 519840, 221760, 40320, 2786, 43978, 348462, 1564314, 4286880, 7444800, 8240400
Offset: 1

Views

Author

Gary W. Adamson, May 07 2006

Keywords

Comments

First few columns of A309220:
1, 2, 6, 14, 34, ...
1, 3, 11, 36, 119, ...
1, 4, 18, 76, 322, ...
1, 5, 27, 140, 727, ...
1, 6, 38, 234, 1442, ...
1, 7, 51, 364, 2599, ...
1, 8, 66, 536, 4354, ...
...

Examples

			First few rows of the triangle:
   1;
   2,   1;
   6,   5,   2;
  14,  22,  18,   6;
  34,  85, 118,  84,  24;
  82, 311, 660, 780, 480, 120;
  ...
Column 3 of A309220 = (6, 11, 18, 27, 38, 51, ...), whose inverse binomial transform is (6, 5, 2).
		

Crossrefs

The leading column is A099425, and the rightmost two diagonals are A038720 and A000142.

Programs

  • Maple
    with(transforms);
    M := 12;
    T := [1];
    S := series((1 + x^2)/(1-x-x^2 + x*y), x, 120):
    for n from 1 to M do
    R2 := expand(coeff(S, x, n));
    R3 := [seq(abs(coeff(R2,y,n-i)),i=0..n)];
    f := k-> add( R3[i]*k^(n-i+1), i=1..nops(R3) ):
    s1 := [seq(f(i),i=1..3*n)];
    s2 := BINOMIALi(s1);
    s3 := [seq(s2[i],i=1..n+1)];
    T := [op(T), op(s3)];
    od:
    T;  # N. J. A. Sloane, Aug 12 2019

Extensions

Edited and extended by N. J. A. Sloane, Aug 12 2019, guided by the comments of R. J. Mathar from Oct 30 2011
Showing 1-3 of 3 results.