cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A118980 Triangle read by rows: rows = inverse binomial transforms of columns of A309220.

Original entry on oeis.org

1, 2, 1, 6, 5, 2, 14, 22, 18, 6, 34, 85, 118, 84, 24, 82, 311, 660, 780, 480, 120, 198, 1100, 3380, 5964, 6024, 3240, 720, 478, 3809, 16380, 40740, 60480, 52920, 25200, 5040, 1154, 13005, 76518, 258804, 531864, 676080, 519840, 221760, 40320, 2786, 43978, 348462, 1564314, 4286880, 7444800, 8240400
Offset: 1

Views

Author

Gary W. Adamson, May 07 2006

Keywords

Comments

First few columns of A309220:
1, 2, 6, 14, 34, ...
1, 3, 11, 36, 119, ...
1, 4, 18, 76, 322, ...
1, 5, 27, 140, 727, ...
1, 6, 38, 234, 1442, ...
1, 7, 51, 364, 2599, ...
1, 8, 66, 536, 4354, ...
...

Examples

			First few rows of the triangle:
   1;
   2,   1;
   6,   5,   2;
  14,  22,  18,   6;
  34,  85, 118,  84,  24;
  82, 311, 660, 780, 480, 120;
  ...
Column 3 of A309220 = (6, 11, 18, 27, 38, 51, ...), whose inverse binomial transform is (6, 5, 2).
		

Crossrefs

The leading column is A099425, and the rightmost two diagonals are A038720 and A000142.

Programs

  • Maple
    with(transforms);
    M := 12;
    T := [1];
    S := series((1 + x^2)/(1-x-x^2 + x*y), x, 120):
    for n from 1 to M do
    R2 := expand(coeff(S, x, n));
    R3 := [seq(abs(coeff(R2,y,n-i)),i=0..n)];
    f := k-> add( R3[i]*k^(n-i+1), i=1..nops(R3) ):
    s1 := [seq(f(i),i=1..3*n)];
    s2 := BINOMIALi(s1);
    s3 := [seq(s2[i],i=1..n+1)];
    T := [op(T), op(s3)];
    od:
    T;  # N. J. A. Sloane, Aug 12 2019

Extensions

Edited and extended by N. J. A. Sloane, Aug 12 2019, guided by the comments of R. J. Mathar from Oct 30 2011

A117938 Triangle, columns generated from Lucas Polynomials.

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 1, 3, 6, 4, 1, 4, 11, 14, 7, 1, 5, 18, 36, 34, 11, 1, 6, 27, 76, 119, 82, 18, 1, 7, 38, 140, 322, 393, 198, 29, 1, 8, 51, 234, 727, 1364, 1298, 478, 47, 1, 9, 66, 364, 1442, 3775, 5778, 4287, 1154, 76, 1, 10, 83, 536, 2599, 8886, 19602, 24476, 14159, 2786, 123
Offset: 1

Views

Author

Gary W. Adamson, Apr 03 2006

Keywords

Comments

Companion triangle using Fibonacci polynomial generators = A073133. Inverse binomial transforms of the columns defines rows of A117937 (with some adjustments of offset).
A309220 is another version of the same triangle (except it omits the last diagonal), and perhaps has a clearer definition. - N. J. A. Sloane, Aug 13 2019

Examples

			First few rows of the triangle are:
  1;
  1, 1;
  1, 2,  3;
  1, 3,  6,   4;
  1, 4, 11,  14,   7;
  1, 5, 18,  36,  34,  11;
  1, 6, 27,  76, 119,  82,  18;
  1, 7, 38, 140, 322, 393, 198, 29;
  ...
For example, T(7,4) = 76 = f(4), x^3 + 3*x = 64 + 12 = 76.
		

Crossrefs

Cf. A000204 (diagonal), A059100 (column 3), A061989 (column 4).

Programs

  • Maple
    Lucas := proc(n,x) # see A114525
        option remember;
        if  n=0 then
            2;
        elif n =1 then
            x ;
        else
            x*procname(n-1,x)+procname(n-2,x) ;
        end if;
        expand(%) ;
    end proc:
    A117938 := proc(n::integer,k::integer)
        if k = 1 then
            1;
        else
            subs(x=n-k+1,Lucas(k-1,x)) ;
        end if;
    end proc:
    seq(seq(A117938(n,k),k=1..n),n=1..12) ; # R. J. Mathar, Aug 16 2019
  • Mathematica
    T[n_, k_]:= LucasL[k-1, n-k+1] - Boole[k==1];
    Table[T[n, k], {n, 12}, {k, n}]//Flatten (* G. C. Greubel, Oct 28 2021 *)
  • Sage
    def A117938(n,k): return 1 if (k==1) else round(2^(1-k)*( (n-k+1 + sqrt((n-k)*(n-k+2) + 5))^(k-1) + (n-k+1 - sqrt((n-k)*(n-k+2) + 5))^(k-1) ))
    flatten([[A117938(n,k) for k in (1..n)] for n in (1..12)]) # G. C. Greubel, Oct 28 2021

Formula

Columns are f(x), x = 1, 2, 3, ..., of the Lucas Polynomials: (1, defined different from A034807 and A114525); (x); (x^2 + 2); (x^3 + 3*x); (x^4 + 4*x^2 + 2); (x^5 + 5*x^3 + 5*x); (x^6 + 6*x^4 + 9*x^2 + 2); (x^7 + 7*x^5 + 14*x^3 + 7*x); ...

Extensions

Terms a(51) and a(52) corrected by G. C. Greubel, Oct 28 2021

A118981 Triangle read by rows: T(n,k) = abs( A104509(n-1,n-k) ).

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 1, 3, 6, 4, 1, 4, 10, 12, 7, 1, 5, 15, 25, 25, 11, 1, 6, 21, 44, 60, 48, 18, 1, 7, 28, 70, 119, 133, 91, 29, 1, 8, 36, 104, 210, 296, 284, 168, 47, 1, 9, 45, 147, 342, 576, 699, 585, 306, 76, 1, 10, 55, 200, 525, 1022, 1485, 1580, 1175, 550, 123
Offset: 1

Views

Author

Gary W. Adamson, May 07 2006

Keywords

Comments

The old definition was: "Companion Pell polynomials, as a triangle."

Examples

			First few rows of the triangle:
  1;
  1, 1;
  1, 2,  3;
  1, 3,  6,  4;
  1, 4, 10, 12,  7;
  1, 5, 15, 25, 25, 11;
  ...
Polynomials: (1), (x + 1), (x^2 + 2x + 3), (x^3 + 3x^2 + 6x + 4), ...
Row 3: (1, 2, 3); as (x^2 + 2x + 3) = f(x), (x=1,2,3,...) of column 3 of A309220: (6, 11, 18, 27, 38, 51,...). The latter sequence = binomial transform of row 3 of A118980: (6, 5, 2).
		

Crossrefs

Programs

  • Mathematica
    Flatten[Map[Reverse,CoefficientList[CoefficientList[Series[(1 + x^2)/(1-x-x^2 - x*y), {x,0,8}], x], y]]] (* Georg Fischer, Aug 13 2019 *)
  • PARI
    {T(n, k) = polcoeff(polcoeff((1 + x^2)/(1 - x - x^2 - x*y) + x*O(x^n), n), n-k)}; /* Michael Somos, Oct 10 2021 */
    
  • PARI
    { A118981(n,k) = if(n==0, k==0, sum(i=0,k\2, n/(n-i) * binomial(k-i,i) * binomial(n-i,n-k) )); } \\ Max Alekseyev, Oct 11 2021

Formula

For n >= 1, T(n,k) = Sum_{i=0..floor(k/2)} n/(n-i) * binomial(n-i,i) * binomial(n-2*i,n-k) = Sum_{i=0..floor(k/2)} (n/(n-i)) * binomial(k-i,i) * binomial(n-i,n-k). - Max Alekseyev, Oct 11 2021
G.f.: (1 + x^2)/(1-x-x^2 - x*y) (columns in reverse order). - Georg Fischer, Aug 13 2019
G.f. for row n >= 1 is the reciprocal of Lucas polynomial L_n(1+x). - Max Alekseyev, Oct 11 2021

Extensions

Edited by N. J. A. Sloane, Aug 12 2019, replacing old definition by explicit formula from R. J. Mathar, Oct 30 2011
a(22)-a(62) from Georg Fischer, Aug 13 2019
More terms from Michel Marcus, Oct 11 2021

A352362 Array read by ascending antidiagonals. T(n, k) = L(k, n) where L are the Lucas polynomials.

Original entry on oeis.org

2, 2, 0, 2, 1, 2, 2, 2, 3, 0, 2, 3, 6, 4, 2, 2, 4, 11, 14, 7, 0, 2, 5, 18, 36, 34, 11, 2, 2, 6, 27, 76, 119, 82, 18, 0, 2, 7, 38, 140, 322, 393, 198, 29, 2, 2, 8, 51, 234, 727, 1364, 1298, 478, 47, 0, 2, 9, 66, 364, 1442, 3775, 5778, 4287, 1154, 76, 2
Offset: 0

Views

Author

Peter Luschny, Mar 18 2022

Keywords

Examples

			Array starts:
n\k 0, 1,  2,   3,    4,     5,      6,       7,        8, ...
--------------------------------------------------------------
[0] 2, 0,  2,   0,    2,     0,      2,       0,        2, ... A010673
[1] 2, 1,  3,   4,    7,    11,     18,      29,       47, ... A000032
[2] 2, 2,  6,  14,   34,    82,    198,     478,     1154, ... A002203
[3] 2, 3, 11,  36,  119,   393,   1298,    4287,    14159, ... A006497
[4] 2, 4, 18,  76,  322,  1364,   5778,   24476,   103682, ... A014448
[5] 2, 5, 27, 140,  727,  3775,  19602,  101785,   528527, ... A087130
[6] 2, 6, 38, 234, 1442,  8886,  54758,  337434,  2079362, ... A085447
[7] 2, 7, 51, 364, 2599, 18557, 132498,  946043,  6754799, ... A086902
[8] 2, 8, 66, 536, 4354, 35368, 287298, 2333752, 18957314, ... A086594
[9] 2, 9, 83, 756, 6887, 62739, 571538, 5206581, 47430767, ... A087798
A007395|A059100|
    A001477 A079908
		

Crossrefs

Cf. A320570 (main diagonal), A114525, A309220 (variant), A117938 (variant), A352361 (Fibonacci polynomials), A350470 (Jacobsthal polynomials).

Programs

  • Maple
    T := (n, k) -> (n/2 + sqrt((n/2)^2 + 1))^k + (n/2 - sqrt((n/2)^2 + 1))^k:
    seq(seq(simplify(T(n - k, k)), k = 0..n), n = 0..10);
  • Mathematica
    Table[LucasL[k, n], {n, 0, 9}, {k, 0, 9}] // TableForm
    (* or *)
    T[ 0, k_] := 2 Mod[k+1, 2]; T[n_, 0] := 2;
    T[n_, k_] := n^k Hypergeometric2F1[1/2 - k/2, -k/2, 1 - k, -4/n^2];
    Table[T[n, k], {n, 0, 9}, {k, 0, 8}] // TableForm
  • PARI
    T(n, k) = ([0, 1; 1, k]^n*[2; k])[1, 1] ;
    export(T)
    for(k = 0, 9, print(parvector(10, n, T(n - 1, k))))

Formula

T(n, k) = Sum_{j=0..floor(k/2)} binomial(k-j, j)*(k/(k-j))*n^(k-2*j) for k >= 1.
T(n, k) = (n/2 + sqrt((n/2)^2 + 1))^k + (n/2 - sqrt((n/2)^2 + 1))^k.
T(n, k) = [x^k] ((2 - n*x)/(1 - n*x - x^2)).
T(n, k) = n^k*hypergeom([1/2 - k/2, -k/2], [1 - k], -4/n^2) for n,k >= 1.
Showing 1-4 of 4 results.