cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A023610 Convolution of Fibonacci numbers and {F(2), F(3), F(4), ...}.

Original entry on oeis.org

1, 3, 7, 15, 30, 58, 109, 201, 365, 655, 1164, 2052, 3593, 6255, 10835, 18687, 32106, 54974, 93845, 159765, 271321, 459743, 777432, 1312200, 2211025, 3719643, 6248479, 10482351, 17562870, 29391490, 49132669, 82048737, 136884293, 228160495, 379975140, 632293452
Offset: 0

Views

Author

Keywords

Comments

a(n-2) + 1 is the number of (3412,1243)-, (3412,2134)- and (3412,1324)-avoiding involutions in S_n, n>1. - Ralf Stephan, Jul 06 2003
The number of terms in all ordered partitions of (n+1) using only ones and twos. For example, a(3)=15 because there are 15 terms in 1+1+1+1;2+1+1;1+2+1;1+1+2;2+2 - Geoffrey Critzer, Apr 07 2008
a(n) is the number of n-matchings in the graph obtained by a zig-zag triangulation of a convex (2n+1)-gon. Example: a(2)=7 because in the triangulation of the convex pentagon ABCDEA with diagonals AD and AC we have 7 2-matchings: {AB,CD},{AB,DE},{BC,AD},{BC,DE},{BC,EA},{CD,EA} and {DE,AC}. - Emeric Deutsch, Dec 25 2004
Partial sums of A029907. First differences of A002940. - Peter Bala, Oct 24 2007
Equals row sums of triangle A144154. - Gary W. Adamson, Sep 12 2008
Equals the number of 1's in Fibonacci Maximal notation for subsets of
(1, 2, 3, 5, 8, 13, ...) terms. For example (cf. A181630): 4, 5, and 6 are the 3 terms 101, 110, and 111 in Fibonacci Maximal. Total number of 1's for those terms = 7 = a(2). - Gary W. Adamson, Nov 02 2010
a(n) is half the number of strokes needed to draw all the domino tilings of a 2 X (n+2) rectangle. - Roberto Tauraso, Mar 15 2014
a(n) is the total number of 1's in all (n+1)-bit dual Zeckendorf representations of integers (A104326). For example, a(2) = 7 counts the 1's in 101, 110, 111. - Shenghui Yang, Feb 09 2025

Crossrefs

Cf. A000045 (Fibonacci numbers).
Column 1 of triangle A063967.

Programs

  • Haskell
    a023610 n = a023610_list !! n
    a023610_list = f [1] $ drop 3 a000045_list where
       f us (v:vs) = (sum $ zipWith (*) us $ tail a000045_list) : f (v:us) vs
    -- Reinhard Zumkeller, Jan 18 2014
    
  • Mathematica
    Table[Sum[Binomial[n - i, i]*(n - i), {i, 0, n}], {n, 1, 33}] (* Geoffrey Critzer, May 04 2009 *)
  • PARI
    a(n)=(n+2)*fibonacci(n+4)/5+(n-1)*fibonacci(n+2)/5 \\ Charles R Greathouse IV, Jun 11 2015
  • Sage
    def A023610():
        a, b, c, d = 1, 3, 7, 15
        while True:
            yield a
            a, b, c, d = b, c, d, 2*(d-b)+c-a
    a = A023610(); [next(a) for i in range(33)]  # Peter Luschny, Nov 20 2013
    

Formula

O.g.f.: (x+1)/(1-x-x^2)^2. - Len Smiley, Dec 11 2001
a(n) = (1/5)*((n+2)*F(n+4) + (n-1)*F(n+2)), with F(n)=A000045(n). - Ralf Stephan, Jul 06 2003
a(n) = Sum_{k=0..n+1} (n-k+1)*binomial(n-k+1, k). - Paul Barry, Nov 05 2005
Recurrence: a(n+2) = a(n+1) + a(n) + Fib(n+4), n >= 0. For n >= 2, a(n-2) = (-1)^n*((-2n+3)*Fib(-n) - (-n)*Fib(-n-1))/5 = (-1)^n*A010049(-n), the second-order Fibonacci numbers of negative index, where Fib(-n) = (-1)^(n+1)*Fib(n). - Peter Bala, Oct 24 2007
a(n) = (n+1)*F(n+2) - A001629(n+1) where F(n) is the n-th Fibonacci number. - Geoffrey Critzer, Apr 07 2008
a(n) = 2*a(n-1) + a(n-2) - 2*a(n-3) - a(n-4), n >= 4. - L. Edson Jeffery, Mar 29 2013
a(n+1) = A004798(n) + A000045(n+2) for n >= 0. - John Molokach, Jul 04 2013
a(n) = A001629(n+1) + A001629(n+2). - Philippe Deléham, Oct 30 2013
E.g.f.: exp(x/2)*(5*(5 + 7*x)*cosh(sqrt(5)*x/2) + sqrt(5)*(11 + 15*x)*sinh(sqrt(5)*x/2))/25. - Stefano Spezia, Dec 04 2023

A058071 A Fibonacci triangle: triangle T(n,k) = Fibonacci(k+1)*Fibonacci(n-k+1), for n >= 0, 0 <= k <= n.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 3, 2, 2, 3, 5, 3, 4, 3, 5, 8, 5, 6, 6, 5, 8, 13, 8, 10, 9, 10, 8, 13, 21, 13, 16, 15, 15, 16, 13, 21, 34, 21, 26, 24, 25, 24, 26, 21, 34, 55, 34, 42, 39, 40, 40, 39, 42, 34, 55, 89, 55, 68, 63, 65, 64, 65, 63, 68, 55, 89, 144, 89, 110, 102, 105, 104, 104, 105, 102, 110, 89, 144
Offset: 0

Views

Author

N. J. A. Sloane, Nov 24 2000

Keywords

Comments

Or, multiplication table of the positive Fibonacci numbers read by antidiagonals.
Or, triangle of products of nonzero Fibonacci numbers.
Or, a two-dimensional square Fibonacci array read by antidiagonals, with offset 1: T(1,1) = T(1,2) = T(2,1) = T(2,2) = 1; thereafter T(m,n) = max {T(m,n-2) + T(m,n-1), T(m-2,n) + T(m-1,n), T(m-2,n-2) + T(m-1,n-1)}. If "max" is changed to "min" we get A283845. - N. J. A. Sloane, Mar 31 2017
Row sums are A001629 (Fibonacci numbers convolved with themselves.). The main diagonal and first subdiagonal are Fibonacci numbers, for other entries T(n,k) = T(n-1,k) + T(n-2,k). The central numbers form A006498. - Gerald McGarvey, Jun 02 2005
Alternating row sums = (1, 0, 3, 0, 8, ...), given by Fibonacci(2n) if n even, else zero.
Row n = edge-counting vector for the Fibonacci cube F(n+1) embedded in the natural way in the hypercube Q(n+1). - Emanuele Munarini, Apr 01 2008
The augmentation of A058071 is the triangle A193595. To fit the definition of augmented triangle at A103091, it is helpful to represent A058071 using p(n,k)=F(k+1)*F(n+1-k) for 0<=k<=n. - Clark Kimberling, Jul 31 2011
T(n,k) = number of appearances of a(k) in p(n) in the n-th convergent p(n)/q(n) of the formal infinite continued fraction [a(0), a(1), ...]; e.g., p(3) = a(0)*a(1)*a(2)*a(3) + a(0)*a(1) + a(0)*a(3) + a(2)*a(3) + 1. Also, T(n,k) = number of appearances of a(k+1) in q(n+1); e.g., q(3) = a(1)*a(2)*a(3) + a(1) + a(3). - Clark Kimberling, Dec 21 2015
Each row is a palindrome, and the central term of row 2n is the square of the F(n+1), where F = A000045 (Fibonacci numbers). - Clark Kimberling, Dec 21 2015
Also called Hosoya's triangle, after the Japanese chemist Haruo Hosoya (b. 1936). - Amiram Eldar, Jun 10 2021

Examples

			Triangle begins as:
   1;
   1,  1;
   2,  1,  2;
   3,  2,  2,  3;
   5,  3,  4,  3,  5;
   8,  5,  6,  6,  5,  8;
  13,  8, 10,  9, 10,  8, 13;
  21, 13, 16, 15, 15, 16, 13, 21;
  34, 21, 26, 24, 25, 24, 26, 21, 34;
  ...
As a square array:
   1,  1,  2,  3,  5,  8, 13, 21, ...
   1,  1,  2,  3,  5,  8, 13, 21, ...
   2,  2,  4,  6, 10, 16, 26, ...
   3,  3,  6,  9, 15, 24, ...
   5,  5, 10, 15, 25, ...
   8,  8, 16, 24, ...
  13, 13, 26, ...
  21, 21, ...
		

References

  • Boris A. Bondarenko, Generalized Pascal Triangles and Pyramids (in Russian), FAN, Tashkent, 1990, ISBN 5-648-00738-8.
  • Thomas Koshy, "Fibonacci and Lucas Numbers and Applications", Chap. 15, Hosoya's Triangle, Wiley, New York, 2001.

Crossrefs

Programs

  • Haskell
    a058071 n k = a058071_tabl !! n !! k
    a058071_row n = a058071_tabl !! n
    a058071_tabl = map (\fs -> zipWith (*) fs $ reverse fs) a104763_tabl
    -- Reinhard Zumkeller, Aug 15 2013
    
  • Magma
    [Fibonacci(k+1)*Fibonacci(n-k+1): k in [0..n], n in [0..12]]; // G. C. Greubel, Apr 06 2022
    
  • Mathematica
    row[n_] := Table[Fibonacci[k]*Fibonacci[n-k+1], {k, 1, n}]; Table[row[n], {n, 1, 12}] // Flatten (* Jean-François Alcover, Dec 16 2013 *)
  • PARI
    T(n,k)=fibonacci(k)*fibonacci(n+2-k) \\ Charles R Greathouse IV, Feb 07 2017
    
  • SageMath
    flatten([[fibonacci(k+1)*fibonacci(n-k+1) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Apr 06 2022

Formula

Row n: F(1)*F(n), F(2)*F(n-1), ..., F(n)*F(1).
G.f.: T(x,y) = 1/((1-x-x^2)(1-xy-x^2y^2)). Recurrence: T(n+4,k+2) = T(n+3,k+2) + T(n+3,k+1) + T(n+2,k+2) - T(n+2,k+1) + T(n+2,k) - T(n+1,k+1) - T(n+1,k) - T(n,k). - Emanuele Munarini, Apr 01 2008
T(n,k) = A104763(n+1,k+1) * A104763(n+1,n+1-k). - Reinhard Zumkeller, Aug 15 2013
Column k is the (generalized) Fibonacci sequence having first two terms F(k+1), F(k+1). - Clark Kimberling, Dec 21 2015
From G. C. Greubel, Apr 06 2022: (Start)
T(n,k) = Fibonacci(k+1)*Fibonacci(n-k+1).
Sum_{k=0..n} T(n, k) = A001629(n+2).
Sum_{k=0..floor(n/2)} T(n, k) = A024458(n+1).
Sum_{k=1..n-1} T(n, k) = A004798(n-1), n >= 2.
Sum_{k=0..floor(n/2)} T(n-k, k) = A250111(n+2).
T(n, 0) = A000045(n+1).
T(2*n, n) = A007598(n+1).
T(2*n+1, n) = A001654(n+1).
T(n, n-k) = T(n, k). (End)

Extensions

More terms from James Sellers, Nov 27 2000
Edited by N. J. A. Sloane, Sep 15 2008 at the suggestion of R. J. Mathar
Name edited by G. C. Greubel, Apr 06 2022

A006367 Number of binary vectors of length n+1 beginning with 0 and containing just 1 singleton.

Original entry on oeis.org

1, 0, 2, 2, 5, 8, 15, 26, 46, 80, 139, 240, 413, 708, 1210, 2062, 3505, 5944, 10059, 16990, 28646, 48220, 81047, 136032, 228025, 381768, 638450, 1066586, 1780061, 2968040, 4944519, 8230370, 13689118, 22751528, 37786915, 62716752, 104028245
Offset: 0

Views

Author

David M. Bloom

Keywords

Comments

Number of compositions of n+1 containing exactly one 1. - Emeric Deutsch, Mar 08 2002
Number of permutations with one fixed point avoiding 231 and 321.
A singleton is a run of length 1. - Michael Somos, Nov 29 2014
Second column of A105422. - Michael Somos, Nov 29 2014
Number of weak compositions of n with one 0 and no 1's. Example: Combine one 0 with the compositions of 5 without 1 to get a(5) = 8 weak compositions: 0,5; 5,0; 0,2,3; 0,3,2; 2,0,3; 3,0,2; 2,3,0; 3,2,0. - Gregory L. Simay, Mar 21 2018

Examples

			a(4) = 5 because among the 2^4 compositions of 5 only 4+1,1+4,2+2+1,2+1+2,1+2+2 contain exactly one 1.
a(4) = 5 because the binary vectors of length 4+1 beginning with 0 and with exactly one singleton are: 00001, 00100, 00110, 01100, 01111. - _Michael Somos_, Nov 29 2014
G.f. = 1 + 2*x^2 + 2*x^3 + 5*x^4 + 8*x^5 + 15*x^6 + 26*x^7 + 46*x^8 + ...
		

Crossrefs

Programs

  • Magma
    I:=[1,0]; [n le 2 select I[n] else Self(n-1)+Self(n-2)+Fibonacci(n-3): n in [1..40]]; // Vincenzo Librandi, Feb 20 2014
    
  • Mathematica
    nn=36; CoefficientList[Series[1/(1 -x/(1-x) +x)^2, {x, 0, nn}], x] (* Geoffrey Critzer, Feb 18 2014 *)
    a[n_]:= If[ n<0, SeriesCoefficient[((1-x)/(1+x-x^2))^2, {x, 0, -2-n}], SeriesCoefficient[((1-x)/(1-x-x^2))^2, {x, 0, n}]]; (* Michael Somos, Nov 29 2014 *)
  • PARI
    Vec( (1-x)^2/(1-x-x^2)^2 + O(x^66) ) \\ Joerg Arndt, Feb 20 2014
    
  • PARI
    {a(n) = if( n<0, n = -2-n; polcoeff( (1 - x)^2 / (1 + x - x^2)^2 + x * O(x^n), n), polcoeff( (1 - x)^2 / (1 - x - x^2)^2 + x * O(x^n), n))}; /* Michael Somos, Nov 29 2014 */
    
  • Python
    from sympy import fibonacci
    from sympy.core.cache import cacheit
    @cacheit
    def a(n): return 1 if n==0 else 0 if n==1 else a(n - 1) + a(n - 2) + fibonacci(n - 3)
    print([a(n) for n in range(51)]) # Indranil Ghosh, Jul 20 2017
    
  • SageMath
    def A006367(n): return (1/5)*(n*lucas_number2(n-2, 1, -1) + fibonacci(n+1) + 4*fibonacci(n-1))
    [A006367(n) for n in (0..40)] # G. C. Greubel, Apr 06 2022

Formula

a(n) = a(n-1) + a(n-2) + Fibonacci(n-3).
G.f.: (1-x)^2/(1-x-x^2)^2. - Emeric Deutsch, Mar 08 2002
a(n) = A010049(n+1) - A010049(n). - R. J. Mathar, May 30 2014
Convolution square of A212804. - Michael Somos, Nov 29 2014
a(n) = -(-1)^n * A004798(-1-n) for all n in Z. - Michael Somos, Nov 29 2014
0 = a(n)*(-2*a(n) - 7*a(n+1) + 2*a(n+2) + a(n+3)) + a(n+1)*(-4*a(n+1) + 10*a(n+2) - 2*a(n+3)) + a(n+2)*(+4*a(n+2) - 7*a(n+3)) + a(n+3)*(+2*a(n+3)) for all n in Z. - Michael Somos, Nov 29 2014
a(n) = (n*Lucas(n-2) + Fibonacci(n))/5 + Fibonacci(n-1). - Ehren Metcalfe, Jul 29 2017

A242671 Decimal expansion of k2, a Diophantine approximation constant such that the area of the "critical parallelogram" (in this case a square) is 4*k2.

Original entry on oeis.org

7, 2, 3, 6, 0, 6, 7, 9, 7, 7, 4, 9, 9, 7, 8, 9, 6, 9, 6, 4, 0, 9, 1, 7, 3, 6, 6, 8, 7, 3, 1, 2, 7, 6, 2, 3, 5, 4, 4, 0, 6, 1, 8, 3, 5, 9, 6, 1, 1, 5, 2, 5, 7, 2, 4, 2, 7, 0, 8, 9, 7, 2, 4, 5, 4, 1, 0, 5, 2, 0, 9, 2, 5, 6, 3, 7, 8, 0, 4, 8, 9, 9, 4, 1, 4, 4, 1, 4, 4, 0, 8, 3, 7, 8, 7, 8, 2, 2, 7, 4
Offset: 0

Views

Author

Jean-François Alcover, May 20 2014

Keywords

Comments

Quoting Steven Finch: "The slopes of the 'critical parallelogram' are (1+sqrt(5))/2 [phi] and (1-sqrt(5))/2 [-1/phi]."
Essentially the same as A229780, A134972, A134945, A098317 and A002163. - R. J. Mathar, May 23 2014
Let W_n be the collection of all binary words of length n that do not contain two consecutive 0's. Let r_n be the ratio of the total number of 1's in W_n divided by the total number of letters in W_n. Then lim_{n->oo} r_n = 0.723606... Equivalently, lim_{n->oo} A004798(n)/(n*A000045(n+2)) = 0.723606... - Geoffrey Critzer, Feb 04 2022
The limiting frequency of the digit 0 in the base phi representation of real numbers in the range [0,1], where phi is the golden ratio (A001622) (Rényi, 1957). - Amiram Eldar, Mar 18 2025

Examples

			k2 = 0.723606797749978969640917366873127623544...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 2.23, p. 176.

Crossrefs

Programs

  • Mathematica
    RealDigits[(1+1/Sqrt[5])/2, 10, 100] // First
  • PARI
    (1 + 1/sqrt(5))/2 \\ Stefano Spezia, Dec 07 2024

Formula

Equals (1 + 1/sqrt(5))/2.
Equals 1/A094874. - Michel Marcus, Dec 01 2018
From Amiram Eldar, Feb 11 2022: (Start)
Equals phi/sqrt(5), where phi is the golden ratio (A001622).
Equals lim_{k->oo} Fibonacci(k+1)/Lucas(k). (End)
From Amiram Eldar, Nov 28 2024: (Start)
Equals A344212/2 = A296184/5 = A300074^2 = sqrt(A229780).
Equals Product_{k>=1} (1 - 1/A081007(k)). (End)
Equals 1 - A244847. - Amiram Eldar, Mar 18 2025

A213587 Rectangular array: (row n) = b**c, where b(h) = F(h+1), c(h) = F(n+h), F = A000045 (Fibonacci numbers), n>=1, h>=1, and ** = convolution.

Original entry on oeis.org

1, 4, 2, 10, 7, 3, 22, 17, 11, 5, 45, 37, 27, 18, 8, 88, 75, 59, 44, 29, 13, 167, 146, 120, 96, 71, 47, 21, 310, 276, 234, 195, 155, 115, 76, 34, 566, 511, 443, 380, 315, 251, 186, 123, 55, 1020, 931, 821, 719, 614, 510, 406, 301, 199, 89, 1819, 1675, 1497, 1332, 1162, 994, 825, 657, 487, 322, 144
Offset: 1

Views

Author

Clark Kimberling, Jun 19 2012

Keywords

Comments

Principal diagonal: A213588.
Antidiagonal sums: A213589.
Row 1, (1,2,3,5,...)**(1,2,3,5,...): A004798.
Row 2, (1,2,3,5,...)**(2,3,5,8,...)
Row 3, (1,2,3,5,...)**(3,5,8,13,...)
For a guide to related arrays, see A213500.

Examples

			Northwest corner (the array is read by falling antidiagonals):
  1....4....10....22....45....88....167
  2....7....17....37....75....146...276
  3....11...27....59....120...234...443
  5....18...44....96....195...380...719
  8....29...71....155...315...614...1162
  13...47...115...251...510...994...1881
		

Crossrefs

Programs

  • GAP
    Flat( List([1..12], n-> List([1..n], k-> ((n-k+1)*Lucas(1,-1, n+3)[2] - Fibonacci(n-k+1)*Lucas(1,-1,k-1)[2])/5 ))); # G. C. Greubel, Jul 08 2019
  • Magma
    [[((n-k+1)*Lucas(n+3) - Fibonacci(n-k+1)*Lucas(k-1))/5: k in [1..n]]: n in [1..12]]; // G. C. Greubel, Jul 08 2019
    
  • Mathematica
    (* First program *)
    b[n_]:= Fibonacci[n+1]; c[n_]:= Fibonacci[n+1];
    T[n_, k_]:= Sum[b[k-i] c[n+i], {i, 0, k-1}]
    TableForm[Table[T[n, k], {n, 1, 10}, {k, 1, 10}]]
    Flatten[Table[T[n-k+1, k], {n, 12}, {k, n, 1, -1}]] (* A213587 *)
    r[n_]:= Table[T[n, k], {k, 40}]  (* columns of antidiagonal triangle *)
    Table[T[n, n], {n, 1, 40}] (* A213588 *)
    s[n_]:= Sum[T[i, n+1-i], {i, 1, n}]
    Table[s[n], {n, 1, 50}] (* A213589 *)
    (* Second program *)
    Table[((n-k+1)*LucasL[n+3] - Fibonacci[n-k+1]*LucasL[k-1])/5, {n, 12}, {k, n}]//Flatten (* G. C. Greubel, Jul 08 2019 *)
  • PARI
    lucas(n) = fibonacci(n+1) + fibonacci(n-1);
    t(n,k) = ((n-k+1)*lucas(n+3) - fibonacci(n-k+1)*lucas(k-1))/5;
    for(n=1,12, for(k=1,n, print1(t(n,k), ", "))) \\ G. C. Greubel, Jul 08 2019
    
  • Sage
    [[((n-k+1)*lucas_number2(n+3,1,-1) - fibonacci(n-k+1)* lucas_number2(k-1, 1,-1))/5 for k in (1..n)] for n in (1..12)] # G. C. Greubel, Jul 08 2019
    

Formula

Rows: T(n,k) = 2*T(n,k-1) + T(n,k-2) - 2*T(n,k-3) - T(n,k-4).
Columns: T(n,k) = T(n-1,k) + T(n-2,k).
G.f. for row n: f(x)/g(x), where f(x) = F(n+1) + F(n+2)*x + F(n)*x^2 and g(x) = (1 - x - x^2)^2.
T(n, k) = (k*Lucas(n+k+2) - Fibonacci(k)*Lucas(n-1))/5. - G. C. Greubel, Jul 08 2019

A129717 Triangle read by rows: T(n,k) is the number of Fibonacci binary words of length n and having k 101's (n >= 0, 0 <= k <= floor((n-1)/2)). A Fibonacci binary word is a binary word having no 00 subword.

Original entry on oeis.org

1, 2, 3, 4, 1, 4, 4, 4, 8, 1, 4, 12, 5, 4, 16, 13, 1, 4, 20, 25, 6, 4, 24, 41, 19, 1, 4, 28, 61, 44, 7, 4, 32, 85, 85, 26, 1, 4, 36, 113, 146, 70, 8, 4, 40, 145, 231, 155, 34, 1, 4, 44, 181, 344, 301, 104, 9, 4, 48, 221, 489, 532, 259, 43, 1, 4, 52, 265, 670, 876, 560, 147, 10, 4, 56
Offset: 0

Views

Author

Emeric Deutsch, May 12 2007

Keywords

Comments

Row n has 1+floor((n-1)/2) terms for n >= 1.
Row sums are the Fibonacci numbers (A000045).
T(n,1) = A008574(n-3).
T(n,2) = A001844(n-5).
T(n,3) = A005900(n-6).
T(n,4) = A006325(n-7).
T(n,5) = A033455(n-10).
T(n,k) = A129718(n,k+1) (since in each word: 1 + the number of 101's = number of runs of 1's).
Sum_{k>=0} k*T(n,k) = A004798(n-2).

Examples

			T(6,2)=5 because we have 110101, 101101, 101010, 101011 and 010101.
Triangle starts:
  1;
  2;
  3;
  4,  1;
  4,  4;
  4,  8,  1;
  4, 12,  5;
		

Crossrefs

Programs

  • Maple
    T:=proc(n,k) if n=0 and k=0 then 1 elif n=1 and k=0 then 2 elif n=2 and k=0 then 3 elif n=3 and k=1 then 1 elif k
    				
  • Mathematica
    MapAt[{0, 1} + # &, #, 4] /. {} -> {1} &@ Table[If[n < 3, n + 1, Binomial[n - k - 1, k] + 2 Binomial[n - k - 2, k] + Binomial[n - k - 3, k]], {n, 0, 17}, {k, 0, Floor[(n - 1)/2]}] // Flatten (* Michael De Vlieger, Nov 15 2019 *)

Formula

G.f.: G(t,z) = (1+z)*(1 + z^2 - t*z^2)/(1 - z - t*z^2).
G.f. of col 0: (1+z)(1+z^2)/(1-z), leading to the partial sums of 1,1,1,1,0,0,0,...
G.f. of col k: z^(2k+1)*(1+z)^2/(1-z)^(k+1) (k >= 1).
T(n,k) = binomial(n-k-1, k) + 2*binomial(n-k-2, k) + binomial(n-k-3, k) for n >= 4 and 0 <= k < n/2.

A171855 Triangle read by rows: T(n,k) is the number of binary words of length n that have no pair of adjacent 1's and have k subwords 0000 (n>=0; k=0 for n=0,1,2; 0<=k<=n-3 for n>=3).

Original entry on oeis.org

1, 2, 3, 5, 7, 1, 10, 2, 1, 15, 3, 2, 1, 22, 6, 3, 2, 1, 32, 11, 6, 3, 2, 1, 47, 18, 12, 6, 3, 2, 1, 69, 30, 20, 13, 6, 3, 2, 1, 101, 50, 34, 22, 14, 6, 3, 2, 1, 148, 81, 59, 38, 24, 15, 6, 3, 2, 1, 217, 130, 99, 68, 42, 26, 16, 6, 3, 2, 1, 318, 208, 163, 118, 77, 46, 28, 17, 6, 3, 2, 1, 466
Offset: 0

Views

Author

Emeric Deutsch, Feb 15 2010

Keywords

Comments

Row n has n-2 entries.
Sum of entries in row n is the Fibonacci number A000045(n+2).
T(n,0)=A003410(n). Sum(k*T(n,k),k>=0)=A004798(n-3) for n>=4.

Examples

			T(5,1)=2 because we have 00001 and 10000; T(7,2)=3 because we have 0000010, 0100000, and 1000001.
Triangle starts:
1;
2;
3;
5;
7,1;
10,2,1;
15,3,2,1;
22,6,3,2,1;
		

Crossrefs

Programs

  • Maple
    G := (1+z)*(1+z-t*z+z^2-t*z^2+z^3-t*z^3)/(1-t*z-z^2+t*z^3-z^3+t*z^4-z^4): Gser := simplify(series(G, z = 0, 18)): for n from 0 to 15 do P[n] := sort(coeff(Gser, z, n)) end do: 1; 2; 3; for n from 3 to 15 do seq(coeff(P[n], t, k), k = 0 .. n-3) end do; # yields sequence in triangular form

Formula

G.f.: G(t,z) = (1+z)(1+z-tz+z^2-tz^2+z^3-tz^3)/(1-tz-z^2+tz^3-z^3+tz^4-z^4).

A185081 Triangle T(n,k), read by rows, given by (0, 1, 1, -1, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (1, 1, -1, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938.

Original entry on oeis.org

1, 0, 1, 0, 1, 2, 0, 2, 4, 3, 0, 3, 9, 10, 5, 0, 5, 18, 28, 22, 8, 0, 8, 35, 68, 74, 45, 13, 0, 13, 66, 154, 210, 177, 88, 21, 0, 21, 122, 331, 541, 574, 397, 167, 34, 0, 34, 222, 686, 1302, 1656, 1446, 850, 310, 55
Offset: 0

Views

Author

Philippe Deléham, Jan 22 2012

Keywords

Comments

Row sums: A133494.

Examples

			Triangle begins:
  1;
  0,  1;
  0,  1,  2;
  0,  2,  4,  3;
  0,  3,  9, 10,  5;
  0,  5, 18, 28, 22,  8;
  0,  8, 35, 68, 74, 45, 13;
From _Philippe Deléham_, Apr 11 2012: (Start)
Triangle in A209138 begins:
  1;
  1,  2;
  2,  4,  3;
  3,  9, 10,  5;
  5, 18, 28, 22,  8;
  8, 35, 68, 74, 45, 13; (End)
		

Crossrefs

Programs

  • Mathematica
    nmax = 9; T[n_, n_] := Fibonacci[n+1]; T[, 0] = 0; T[n, 1] := Fibonacci[n]; T[n_, k_] /; 1 < k < n := T[n, k] = T[n - 1, k] + T[n - 1, k - 1] + T[n - 2, k] + T[n - 2, k - 1] + T[n - 2, k - 2]; T[, ] = 0;
    Table[T[n, k], {n, 0, nmax}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 20 2017 *)

Formula

Sum_{k=0..n} T(n,k)*x^k = A033999(n), A000007(n), A133494(n) for x = -1, 0, 1 respectively.
T(n,k) = T(n-1,k) + T(n-1,k-1) + T(n-2,k) + T(n-2,k-1) + T(n-2,k-2), for n > 2, T(0,0) = T(1,1) = T(2,1) = 1, T(1,0) = T(2,0) = 0, T(2,2) = 2.
T(n+1,n) = A004798(n), T(n,n) = T(n+1,1) = A000045(n+1).
T(n,k) = A209138(n,k-1) for k >= 1. - Philippe Deléham, Apr 11 2012
G.f.: (-1 + x^2*y + x + x^2)/(-1 + x^2*y + x + x^2 + x*y + x^2*y^2). - R. J. Mathar, Aug 11 2015

Extensions

Corrected by Jean-François Alcover, Jun 20 2017

A379039 G.f. A(x) satisfies A(x) = ( (1 + x) * (1 + x*A(x)^2) )^2.

Original entry on oeis.org

1, 4, 22, 172, 1513, 14356, 143228, 1480956, 15728516, 170558634, 1880568650, 21019304814, 237615558790, 2712066792304, 31210387143556, 361738488066632, 4218907281330372, 49476183230651216, 583066018329260673, 6901459436855306662, 82011678696864842013
Offset: 0

Views

Author

Seiichi Manyama, Dec 14 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, binomial(4*k+2, k)*binomial(4*k+2, n-k)/(2*k+1));

Formula

G.f.: A(x) = B(x)^2 where B(x) is the g.f. of A364337.
a(n) = Sum_{k=0..n} binomial(4*k+2,k) * binomial(4*k+2,n-k)/(2*k+1).

A106408 Triangle, read by rows, where T(1,1) = 1; T(2,1) = T(2,2) = 2; for n > 2, T(n,n) = T(n-1,n-1) + T(n-2,n-2); T(n+1,n) = 2 * T(n,n); for all other entries, T(n,k) = T(n-1,k) + T(n-2,k).

Original entry on oeis.org

1, 2, 2, 3, 4, 3, 5, 6, 6, 5, 8, 10, 9, 10, 8, 13, 16, 15, 15, 16, 13, 21, 26, 24, 25, 24, 26, 21, 34, 42, 39, 40, 40, 39, 42, 34, 55, 68, 63, 65, 64, 65, 63, 68, 55, 89, 110, 102, 105, 104, 104, 105, 102, 110, 89, 144, 178, 165, 170, 168, 169, 168, 170, 165, 178, 144
Offset: 1

Views

Author

Gerald McGarvey, May 28 2005

Keywords

Comments

Row sums are A004798 (convolution of Fibonacci numbers 1,2,3,5,... with themselves). Central numbers of the rows are A006498 (a(n) = a(n-1)+a(n-3)+a(n-4)). First column and main diagonal are Fibonacci numbers 1,2,3,5,... First subdiagonal are 2*Fibonacci numbers. T(n,k) = F(n-k+2)*F(k+1) where F(m) is the m-th Fibonacci number. For the antidiagonal sums b(n): b(1) = 1, b(2) = 2, then b(n) = b(n-1) + b(n-2) + F(floor((n+3)/2)).
T(n,k) is the number of Boolean intervals of the form [s_k,w] in the weak order on S_n, for a fixed simple reflection s_k. - Bridget Tenner, Jan 16 2020

Examples

			Triangle begins
   1;
   2,  2;
   3,  4,  3;
   5,  6,  6,  5;
   8, 10,  9, 10,  8;
		

Crossrefs

Formula

G.f.: (1+x+y+x*y)/((1-x-x^2)*(1-y-y^2)) [U coordinates] - N. J. A. Sloane, Jun 01 2005
Showing 1-10 of 14 results. Next