cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A245278 Decimal expansion of k3, a Diophantine approximation constant such that the conjectured volume of the "critical parallelepiped" is 2^3*k3 (the 3-D analog of A242671).

Original entry on oeis.org

5, 7, 8, 4, 1, 6, 7, 6, 2, 7, 8, 8, 9, 0, 0, 7, 5, 9, 0, 7, 4, 6, 0, 2, 0, 5, 8, 1, 4, 6, 1, 9, 5, 6, 7, 4, 7, 9, 9, 4, 8, 3, 9, 6, 9, 4, 3, 6, 6, 4, 5, 5, 0, 1, 5, 4, 8, 3, 1, 7, 6, 7, 4, 9, 4, 1, 7, 9, 6, 0, 2, 0, 8, 2, 4, 1, 2, 2, 0, 7, 1, 4, 5, 0, 6, 5, 8, 2, 7, 4, 8, 7, 0, 0, 2, 7, 9, 3, 9, 1
Offset: 0

Views

Author

Jean-François Alcover, Jul 16 2014

Keywords

Examples

			0.578416762788900759074602058146195674799483969436645501548317674941796...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 2.23 Diophantine approximation constants, p. 176.

Crossrefs

Cf. A242671.

Programs

  • Mathematica
    RealDigits[8/7*Cos[2*Pi/7]*Cos[Pi/7]^2, 10, 100] // First

Formula

8/7*cos(2*Pi/7)*cos(Pi/7)^2.
Also equals the positive root of 343*x^3 - 147*x^2 - 28*x - 1.

A182760 Beatty sequence for (3 + 5^(-1/2))/2.

Original entry on oeis.org

1, 3, 5, 6, 8, 10, 12, 13, 15, 17, 18, 20, 22, 24, 25, 27, 29, 31, 32, 34, 36, 37, 39, 41, 43, 44, 46, 48, 49, 51, 53, 55, 56, 58, 60, 62, 63, 65, 67, 68, 70, 72, 74, 75, 77, 79, 81, 82, 84, 86, 87, 89, 91, 93, 94, 96, 98, 99, 101, 103, 105, 106, 108, 110, 112, 113, 115, 117, 118, 120, 122, 124, 125, 127, 129, 130, 132, 134, 136, 137, 139, 141, 143, 144, 146, 148, 149, 151, 153, 155, 156, 158, 160, 162, 163, 165, 167, 168
Offset: 1

Views

Author

Clark Kimberling, Nov 28 2010

Keywords

Comments

Suppose that u and v are positive real numbers for which the sets S(u)={j*u} and S(v)={k*v}, for j>=1 and k>=1, are disjoint. Let a(n) be the position of n*u when the numbers in S(u) and S(v) are jointly ranked. Then, as is easy to prove, a is the Beatty sequence of the number r=1+u/v, and the complement of a is the Beatty sequence of s=1+v/u. For A182760, take u = golden ratio = (1+sqrt(5))/2 and v=sqrt(5), so that r=(3+5^(-1/2))/2 and s=(7-sqrt(5))/2.

Examples

			Let u=(1+sqrt(5))/2 and v=sqrt(5).  When the numbers ju and kv are jointly ranked, we write U for numbers of the form ju and V for the others.  Then the ordering of the ranked numbers is given by U V U V U U V U V U V U U ..  The positions of U are given by A182760.
		

Crossrefs

Cf. A182761 (the complement of A182760), A242671

Programs

Formula

a(n) = floor(r*n), where r = (3 + 5^(-1/2))/2 = 1.72360...

Extensions

More than the usual number of terms are shown in order to distinguish this from a very similar sequence. - N. J. A. Sloane, Jan 20 2025

A094874 Decimal expansion of (5-sqrt(5))/2.

Original entry on oeis.org

1, 3, 8, 1, 9, 6, 6, 0, 1, 1, 2, 5, 0, 1, 0, 5, 1, 5, 1, 7, 9, 5, 4, 1, 3, 1, 6, 5, 6, 3, 4, 3, 6, 1, 8, 8, 2, 2, 7, 9, 6, 9, 0, 8, 2, 0, 1, 9, 4, 2, 3, 7, 1, 3, 7, 8, 6, 4, 5, 5, 1, 3, 7, 7, 2, 9, 4, 7, 3, 9, 5, 3, 7, 1, 8, 1, 0, 9, 7, 5, 5, 0, 2, 9, 2, 7, 9, 2, 7, 9, 5, 8, 1, 0, 6, 0, 8, 8, 6, 2, 5, 1, 5, 2, 4
Offset: 1

Views

Author

N. J. A. Sloane, Jun 14 2004

Keywords

Comments

Also the limiting ratio of Lucas(n)/Fibonacci(n+1), or Fibonacci(n-1)/Fibonacci(n+1) + 1. - Alexander Adamchuk, Oct 10 2007

Examples

			1.38196601125010515179541316563436188...
		

Crossrefs

Programs

Formula

Equals (2-phi)*(2+phi) = 2 - 1/phi = 3 - phi = (5-sqrt(5))/2 = (2*sin(Pi/5))^2, where phi is the golden ratio (A001622).
Equals Product_{n > 0} (1 + 1/A192223(n)). - Charles R Greathouse IV, Jun 26 2011
Equals 1 + Sum_{k >= 2} (-1)^k/(Fibonacci(k)*Fibonacci(k+1)). See Ni et al. - Michel Marcus, Jun 26 2018; corrected by Michel Marcus, Mar 11 2024
Equals Sum_{k>=0} binomial(2*k,k)/((k+1) * 5^k). - Amiram Eldar, Aug 03 2020
From Amiram Eldar, Nov 28 2024: (Start)
Equals 5*A244847 = 2*A187798 = 1/A242671 = A182007^2 = sqrt(A187426).
Equals Product_{k>=1} (1 + 1/A081012(k)). (End)

A344212 Decimal expansion of 1 + 1/sqrt(5).

Original entry on oeis.org

1, 4, 4, 7, 2, 1, 3, 5, 9, 5, 4, 9, 9, 9, 5, 7, 9, 3, 9, 2, 8, 1, 8, 3, 4, 7, 3, 3, 7, 4, 6, 2, 5, 5, 2, 4, 7, 0, 8, 8, 1, 2, 3, 6, 7, 1, 9, 2, 2, 3, 0, 5, 1, 4, 4, 8, 5, 4, 1, 7, 9, 4, 4, 9, 0, 8, 2, 1, 0, 4, 1, 8, 5, 1, 2, 7, 5, 6, 0, 9, 7, 9, 8, 8, 2, 8, 8, 2, 8, 8, 1, 6, 7
Offset: 1

Views

Author

Wesley Ivan Hurt, May 11 2021

Keywords

Comments

Decimal expansion of the midradius of a rhombic triacontahedron with unit edge length.
Essentially the same sequence of digits as A176453, A134974, A020762 and A010476. - R. J. Mathar, May 16 2021

Examples

			1.447213595499957939281834733746255247088123671922305...
		

Crossrefs

Cf. A019952 (rhombic triacontahedron inscribed sphere radius).
Cf. A344171 (rhombic triacontahedron surface area).
Cf. A344172 (rhombic triacontahedron volume).

Programs

Formula

From Amiram Eldar, Nov 28 2024: (Start)
Equals 2*A242671 = 1/A187798.
Equals Product_{k>=0} (1 + 1/A081005(k)). (End)

A244847 Decimal expansion of rho_c = (5-sqrt(5))/10, the asymptotic critical density for the hard hexagon model.

Original entry on oeis.org

2, 7, 6, 3, 9, 3, 2, 0, 2, 2, 5, 0, 0, 2, 1, 0, 3, 0, 3, 5, 9, 0, 8, 2, 6, 3, 3, 1, 2, 6, 8, 7, 2, 3, 7, 6, 4, 5, 5, 9, 3, 8, 1, 6, 4, 0, 3, 8, 8, 4, 7, 4, 2, 7, 5, 7, 2, 9, 1, 0, 2, 7, 5, 4, 5, 8, 9, 4, 7, 9, 0, 7, 4, 3, 6, 2, 1, 9, 5, 1, 0, 0, 5, 8, 5, 5, 8, 5, 5, 9, 1, 6, 2, 1, 2, 1, 7, 7, 2, 5, 0, 3
Offset: 0

Views

Author

Jean-François Alcover, Nov 12 2014

Keywords

Comments

The vertical distance between the accumulation point and the outermost point of a golden spiral inscribed inside a golden rectangle with dimensions phi and 1 along the x and y axes, respectively (the horizontal distance is A176015). - Amiram Eldar, May 18 2021
The limiting frequency of the digit 1 in the base phi representation of real numbers in the range [0,1], where phi is the golden ratio (A001622) (Rényi, 1957). - Amiram Eldar, Mar 18 2025

Examples

			0.2763932022500210303590826331268723764559381640388474275729102754589479...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 1.2 The Golden Mean, phi, p. 7.
  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.12.1 Phase transitions in Lattice Gas Models, p. 347.

Crossrefs

Essentially the same sequence of digits as A229760 and A187799.

Programs

  • Mathematica
    RealDigits[(5 - Sqrt[5])/10, 10, 102] // First

Formula

Equals 1/(sqrt(5)*phi), where phi = (1+sqrt(5))/2 = A001622. - Vaclav Kotesovec, Nov 13 2014
Equals lim_{n -> infinity} A000045(n)/A000032(n+1). - Bruno Berselli, Jan 22 2018
Equals Sum_{n>=1} A000045(3^(n-1))/A000032(3^n) = Sum_{n>=1} A045529(n-1)/A006267(n). - Amiram Eldar, Dec 20 2018
Equals 1 - A242671. - Amiram Eldar, Mar 18 2025

A081007 a(n) = Fibonacci(4n+1) - 1, or Fibonacci(2n)*Lucas(2n+1).

Original entry on oeis.org

0, 4, 33, 232, 1596, 10945, 75024, 514228, 3524577, 24157816, 165580140, 1134903169, 7778742048, 53316291172, 365435296161, 2504730781960, 17167680177564, 117669030460993, 806515533049392, 5527939700884756, 37889062373143905, 259695496911122584
Offset: 0

Views

Author

R. K. Guy, Mar 01 2003

Keywords

Comments

Also the index of the first of two consecutive triangular numbers whose sum is equal to the sum of two consecutive heptagonal numbers. - Colin Barker, Dec 20 2014

References

  • Hugh C. Williams, Edouard Lucas and Primality Testing, John Wiley and Sons, 1998, p. 75

Crossrefs

Cf. A000045 (Fibonacci numbers), A000032 (Lucas numbers).

Programs

  • GAP
    List([0..30], n-> Fibonacci(4*n+1)-1); # G. C. Greubel, Jul 14 2019
  • Magma
    [Fibonacci(4*n+1) -1: n in [0..30]]; // Vincenzo Librandi, Apr 15 2011
    
  • Maple
    with(combinat) for n from 0 to 30 do printf(`%d,`,fibonacci(4*n+1)-1) od # James Sellers, Mar 03 2003
  • Mathematica
    Table[Fibonacci[4n+1] -1, {n,0,30}] (* Wesley Ivan Hurt, Oct 06 2013 *)
    LinearRecurrence[{8,-8,1},{0,4,33},30] (* Harvey P. Dale, Jul 31 2018 *)
    Table[Fibonacci[2n]LucasL[2n+1], {n,0,30}] (* Rigoberto Florez, Apr 19 2019 *)
  • Maxima
    A081007(n):=fib(4*n+1)-1$
    makelist(A081007(n),n,0,30); /* Martin Ettl, Nov 12 2012 */
    
  • PARI
    concat(0, Vec(x*(4+x)/((1-x)*(1-7*x+x^2)) + O(x^30))) \\ Colin Barker, Dec 20 2014
    
  • PARI
    vector(30, n, n--; fibonacci(4*n+1)-1) \\ G. C. Greubel, Jul 14 2019
    
  • Sage
    [fibonacci(4*n+1)-1 for n in (0..30)] # G. C. Greubel, Jul 14 2019
    

Formula

a(n) = 8*a(n-1) - 8*a(n-2) + a(n-3).
G.f.: x*(4+x)/((1-x)*(1-7*x+x^2)). - Colin Barker, Jun 24 2012
a(n) = Sum_{i=1..2n} binomial(2n+i, 2n-i). - Wesley Ivan Hurt, Oct 06 2013
a(n) = Sum_{i=0..2n-1} F(i)*L(i+2), F(i) = A000045(i) and L(i) = A000032(i). - Rigoberto Florez, Apr 19 2019
Product_{n>=1} (1 - 1/a(n)) = (1 + 1/sqrt(5))/2 (A242671). - Amiram Eldar, Nov 28 2024

Extensions

More terms from James Sellers, Mar 03 2003

A377995 Decimal expansion of the dihedral angle, in radians, between square and pentagonal faces in a (small) rhombicosidodecahedron.

Original entry on oeis.org

2, 5, 8, 8, 0, 1, 8, 2, 9, 4, 6, 9, 2, 7, 4, 7, 9, 8, 6, 9, 5, 4, 1, 1, 0, 6, 5, 3, 1, 9, 0, 2, 3, 4, 3, 6, 4, 1, 6, 2, 1, 4, 5, 5, 7, 6, 6, 7, 4, 3, 8, 9, 4, 9, 7, 6, 3, 6, 6, 7, 4, 9, 8, 8, 5, 9, 0, 9, 6, 1, 2, 3, 6, 7, 9, 7, 5, 2, 7, 6, 0, 1, 6, 2, 1, 3, 2, 6, 2, 6
Offset: 1

Views

Author

Paolo Xausa, Nov 15 2024

Keywords

Comments

Also the dihedral angle, in radians, between square and 10-gonal faces in a truncated icosidodecahedron (great rhombicosidodecahedron).

Examples

			2.588018294692747986954110653190234364162145576674...
		

Crossrefs

Programs

  • Mathematica
    First[RealDigits[ArcCos[-Sqrt[(5 + Sqrt[5])/10]], 10, 100]] (* or *)
    First[RealDigits[Min[PolyhedronData["Rhombicosidodecahedron", "DihedralAngles"]], 10, 100]]

Formula

Equals arccos(-sqrt((5 + sqrt(5))/10)) = arccos(-sqrt(A242671)).

A049658 a(n) = (F(8*n+5) - 2)/3, where F = A000045 (the Fibonacci sequence).

Original entry on oeis.org

1, 77, 3648, 171409, 8052605, 378301056, 17772097057, 834910260653, 39223010153664, 1842646566961585, 86565165637040861, 4066720138373958912, 191049281337939028033, 8975249502744760358669
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [(Fibonacci(8*n+5) - 2)/3: n in [0..30]]; // G. C. Greubel, Dec 02 2017
  • Mathematica
    (Fibonacci[8Range[0,20]+5]-2)/3 (* or *) LinearRecurrence[{48,-48,1},{1,77,3648},20] (* Harvey P. Dale, Jun 20 2013 *)
  • PARI
    for(n=0,30, print1((fibonacci(8*n+5) - 2)/3, ", ")) \\ G. C. Greubel, Dec 02 2017
    

Formula

G.f.: (1+29*x)/(1-48*x+48*x^2-x^3).
a(0)=1, a(1)=77, a(2)=3648, a(n) = 48*a(n-1)-48*a(n-2)+a(n-3). - Harvey P. Dale, Jun 20 2013
Product_{n>=1} (1 - 1/a(n)) = 3*(5+sqrt(5))/22 = (15/11) * A242671. - Amiram Eldar, Nov 28 2024

Extensions

Description corrected by and more terms from Michael Somos

A322258 Decimal expansion of exp(-phi/sqrt(5)), where phi is the golden ratio.

Original entry on oeis.org

4, 8, 4, 9, 9, 9, 8, 0, 1, 2, 9, 2, 9, 5, 8, 0, 2, 5, 2, 3, 1, 7, 5, 1, 3, 2, 2, 3, 0, 0, 9, 5, 2, 4, 8, 3, 4, 8, 0, 6, 5, 9, 9, 6, 5, 6, 4, 1, 5, 5, 9, 5, 7, 1, 2, 5, 2, 7, 1, 8, 0, 2, 9, 1, 0, 2, 9, 1, 9, 2, 1, 2, 8, 4, 6, 5, 8, 8, 5, 6, 9, 3, 5, 0, 1, 5, 0
Offset: 0

Views

Author

Amiram Eldar, Dec 01 2018

Keywords

Examples

			0.48499980129295802523175132230095248348065996564155...
		

References

  • J. Sandor and B. Crstici, Handbook of Number Theory II, Springer, 2004, pp. 54-55, p. 182.

Crossrefs

Programs

  • Mathematica
    RealDigits[Exp[-GoldenRatio/Sqrt[5]], 10, 120][[1]]
  • PARI
    exp(-(1+1/sqrt(5))/2) \\ Charles R Greathouse IV, Nov 21 2024

Formula

Equals Product_{k>=1} (L(k)/(sqrt(5)*F(k)))^(phi(k)/k), where L(k) and F(k) are the Lucas and Fibonacci numbers, and phi(k) is the Euler totient function.
Equals exp(-A242671).
Showing 1-9 of 9 results.