cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A213588 Principal diagonal of the convolution array A213587.

Original entry on oeis.org

1, 7, 27, 96, 315, 994, 3043, 9123, 26909, 78370, 225911, 645732, 1832677, 5170111, 14509695, 40537284, 112805043, 312808198, 864707719, 2383649115, 6554153921, 17980221382, 49222822127, 134495771976, 366850762825
Offset: 1

Views

Author

Clark Kimberling, Jun 19 2012

Keywords

Crossrefs

Programs

  • GAP
    List([1..30], n-> (n*Lucas(1,-1,2*n+2)[2] - Fibonacci(n)*Lucas(1,-1,n-1)[2])/5); # G. C. Greubel, Jul 08 2019
  • Magma
    [(n*Lucas(2*n+2) - Fibonacci(n)*Lucas(n-1))/5: n in [1..30]]; // G. C. Greubel, Jul 08 2019
    
  • Mathematica
    (* First program *)
    b[n_]:= Fibonacci[n+1]; c[n_]:= Fibonacci[n+1];
    T[n_, k_]:= Sum[b[k-i] c[n+i], {i, 0, k-1}]
    TableForm[Table[T[n, k], {n, 1, 10}, {k, 1, 10}]]
    Flatten[Table[T[n-k+1, k], {n, 12}, {k, n, 1, -1}]] (* A213587 *)
    r[n_]:= Table[T[n, k], {k, 40}]  (* columns of antidiagonal triangle *)
    Table[T[n, n], {n, 1, 40}] (* A213588 *)
    s[n_]:= Sum[T[i, n+1-i], {i, 1, n}]
    Table[s[n], {n, 1, 50}] (* A213589 *)
    (* Second program *)
    Table[(n*LucasL[2n+2] -Fibonacci[n]*LucasL[n-1])/5, {n, 30}] (* G. C. Greubel, Jul 08 2019 *)
  • PARI
    lucas(n) = fibonacci(n+1) + fibonacci(n-1);
    vector(30, n, (n*lucas(2*n+2) - fibonacci(n)*lucas(n-1))/5) \\ G. C. Greubel, Jul 08 2019
    
  • Sage
    [(n*lucas_number2(2*n+2,1,-1) - fibonacci(n)*lucas_number2(n-1, 1, -1))/5 for n in (1..30)] # G. C. Greubel, Jul 08 2019
    

Formula

a(n) = 5*a(n-1) - 5*a(n-2) - 5*a(n-3) + 5*a(n-4) - a(n-5).
G.f.: x*(1 + 2*x - 3*x^2 + x^3)/((1 + x)*(1 - 3*x + x^2)^2).
a(n) = (n*Lucas(2*n+2) - Fibonacci(n)*Lucas(n-1))/5. - G. C. Greubel, Jul 08 2019

A213589 Antidiagonal sums of the convolution array A213587.

Original entry on oeis.org

1, 6, 20, 55, 135, 308, 668, 1395, 2830, 5610, 10914, 20904, 39515, 73860, 136720, 250937, 457137, 827260, 1488190, 2662905, 4741946, 8407236, 14846100, 26120400, 45801925, 80064018, 139553708, 242597035, 420678315, 727792580
Offset: 1

Views

Author

Clark Kimberling, Jun 19 2012

Keywords

Crossrefs

Programs

  • GAP
    F:=Fibonacci;; List([1..35], n-> (n+1)*((n+2)*F(n+3) + 2*(n-2)*F(n+2))/10) # G. C. Greubel, Jul 08 2019
  • Magma
    F:=Fibonacci; [(n+1)*((n+2)*F(n+3) + 2*(n-2)*F(n+2))/10: n in [1..35]]; // G. C. Greubel, Jul 08 2019
    
  • Mathematica
    (* First program *)
    b[n_]:= Fibonacci[n+1]; c[n_]:= Fibonacci[n+1];
    T[n_, k_]:= Sum[b[k-i] c[n+i], {i, 0, k-1}]
    TableForm[Table[T[n, k], {n, 1, 10}, {k, 1, 10}]]
    Flatten[Table[T[n-k+1, k], {n, 12}, {k, n, 1, -1}]] (* A213587 *)
    r[n_]:= Table[T[n, k], {k, 40}]  (* columns of antidiagonal triangle *)
    Table[T[n, n], {n, 1, 40}] (* A213588 *)
    s[n_]:= Sum[T[i, n+1-i], {i, 1, n}]
    Table[s[n], {n, 1, 50}] (* A213589 *)
    (* Second program *)
    Table[(n+1)*(n*LucasL[n+3] -2*Fibonacci[n])/10, {n, 35}] (* G. C. Greubel, Jul 08 2019 *)
  • Maxima
    a(n):=(n+1)/2*sum((n-j)*binomial(n-j+1,j),j,0,(n+1)/2); /* Vladimir Kruchinin, Apr 09 2016 */
    
  • PARI
    vector(35, n, f=fibonacci; (n+1)*((n+2)*f(n+3)+ 2*(n-2)*f(n+2) )/10) \\ G. C. Greubel, Jul 08 2019
    
  • Sage
    f=fibonacci; [(n+1)*((n+2)*f(n+3)+ 2*(n-2)*f(n+2) )/10 for n in (1..35)] # G. C. Greubel, Jul 08 2019
    

Formula

a(n) = 3*a(n-1) - 5*a(n-3) + 3*a(n-5) + a(n-6).
G.f.: x*(1 + 3*x + 2*x^2)/(1 - x - x^2)^3.
a(n) = (n+1)/2*Sum_{j=0..(n+1)/2}((n-j)*binomial(n-j+1,j)). - Vladimir Kruchinin, Apr 09 2016
a(n) = (n+1)*(n*Lucas(n+3) - 2*Fibonacci(n))/10 = (n+1)*((n+2) *Fibonacci(n+3) + 2*(n-2)*Fibonacci(n+2))/10. - G. C. Greubel, Jul 08 2019

A213500 Rectangular array T(n,k): (row n) = b**c, where b(h) = h, c(h) = h + n - 1, n >= 1, h >= 1, and ** = convolution.

Original entry on oeis.org

1, 4, 2, 10, 7, 3, 20, 16, 10, 4, 35, 30, 22, 13, 5, 56, 50, 40, 28, 16, 6, 84, 77, 65, 50, 34, 19, 7, 120, 112, 98, 80, 60, 40, 22, 8, 165, 156, 140, 119, 95, 70, 46, 25, 9, 220, 210, 192, 168, 140, 110, 80, 52, 28, 10, 286, 275, 255, 228, 196, 161, 125, 90
Offset: 1

Views

Author

Clark Kimberling, Jun 14 2012

Keywords

Comments

Principal diagonal: A002412.
Antidiagonal sums: A002415.
Row 1: (1,2,3,...)**(1,2,3,...) = A000292.
Row 2: (1,2,3,...)**(2,3,4,...) = A005581.
Row 3: (1,2,3,...)**(3,4,5,...) = A006503.
Row 4: (1,2,3,...)**(4,5,6,...) = A060488.
Row 5: (1,2,3,...)**(5,6,7,...) = A096941.
Row 6: (1,2,3,...)**(6,7,8,...) = A096957.
...
In general, the convolution of two infinite sequences is defined from the convolution of two n-tuples: let X(n) = (x(1),...,x(n)) and Y(n)=(y(1),...,y(n)); then X(n)**Y(n) = x(1)*y(n)+x(2)*y(n-1)+...+x(n)*y(1); this sum is the n-th term in the convolution of infinite sequences:(x(1),...,x(n),...)**(y(1),...,y(n),...), for all n>=1.
...
In the following guide to related arrays and sequences, row n of each array T(n,k) is the convolution b**c of the sequences b(h) and c(h+n-1). The principal diagonal is given by T(n,n) and the n-th antidiagonal sum by S(n). In some cases, T(n,n) or S(n) differs in offset from the listed sequence.
b(h)........ c(h)........ T(n,k) .. T(n,n) .. S(n)
h .......... h .......... A213500 . A002412 . A002415
h .......... h^2 ........ A212891 . A213436 . A024166
h^2 ........ h .......... A213503 . A117066 . A033455
h^2 ........ h^2 ........ A213505 . A213546 . A213547
h .......... h*(h+1)/2 .. A213548 . A213549 . A051836
h*(h+1)/2 .. h .......... A213550 . A002418 . A005585
h*(h+1)/2 .. h*(h+1)/2 .. A213551 . A213552 . A051923
h .......... h^3 ........ A213553 . A213554 . A101089
h^3 ........ h .......... A213555 . A213556 . A213547
h^3 ........ h^3 ........ A213558 . A213559 . A213560
h^2 ........ h*(h+1)/2 .. A213561 . A213562 . A213563
h*(h+1)/2 .. h^2 ........ A213564 . A213565 . A101094
2^(h-1) .... h .......... A213568 . A213569 . A047520
2^(h-1) .... h^2 ........ A213573 . A213574 . A213575
h .......... Fibo(h) .... A213576 . A213577 . A213578
Fibo(h) .... h .......... A213579 . A213580 . A053808
Fibo(h) .... Fibo(h) .... A067418 . A027991 . A067988
Fibo(h+1) .. h .......... A213584 . A213585 . A213586
Fibo(n+1) .. Fibo(h+1) .. A213587 . A213588 . A213589
h^2 ........ Fibo(h) .... A213590 . A213504 . A213557
Fibo(h) .... h^2 ........ A213566 . A213567 . A213570
h .......... -1+2^h ..... A213571 . A213572 . A213581
-1+2^h ..... h .......... A213582 . A213583 . A156928
-1+2^h ..... -1+2^h ..... A213747 . A213748 . A213749
h .......... 2*h-1 ...... A213750 . A007585 . A002417
2*h-1 ...... h .......... A213751 . A051662 . A006325
2*h-1 ...... 2*h-1 ...... A213752 . A100157 . A071238
2*h-1 ...... -1+2^h ..... A213753 . A213754 . A213755
-1+2^h ..... 2*h-1 ...... A213756 . A213757 . A213758
2^(n-1) .... 2*h-1 ...... A213762 . A213763 . A213764
2*h-1 ...... Fibo(h) .... A213765 . A213766 . A213767
Fibo(h) .... 2*h-1 ...... A213768 . A213769 . A213770
Fibo(h+1) .. 2*h-1 ...... A213774 . A213775 . A213776
Fibo(h) .... Fibo(h+1) .. A213777 . A001870 . A152881
h .......... 1+[h/2] .... A213778 . A213779 . A213780
1+[h/2] .... h .......... A213781 . A213782 . A005712
1+[h/2] .... [(h+1)/2] .. A213783 . A213759 . A213760
h .......... 3*h-2 ...... A213761 . A172073 . A002419
3*h-2 ...... h .......... A213771 . A213772 . A132117
3*h-2 ...... 3*h-2 ...... A213773 . A214092 . A213818
h .......... 3*h-1 ...... A213819 . A213820 . A153978
3*h-1 ...... h .......... A213821 . A033431 . A176060
3*h-1 ...... 3*h-1 ...... A213822 . A213823 . A213824
3*h-1 ...... 3*h-2 ...... A213825 . A213826 . A213827
3*h-2 ...... 3*h-1 ...... A213828 . A213829 . A213830
2*h-1 ...... 3*h-2 ...... A213831 . A213832 . A212560
3*h-2 ...... 2*h-1 ...... A213833 . A130748 . A213834
h .......... 4*h-3 ...... A213835 . A172078 . A051797
4*h-3 ...... h .......... A213836 . A213837 . A071238
4*h-3 ...... 2*h-1 ...... A213838 . A213839 . A213840
2*h-1 ...... 4*h-3 ...... A213841 . A213842 . A213843
2*h-1 ...... 4*h-1 ...... A213844 . A213845 . A213846
4*h-1 ...... 2*h-1 ...... A213847 . A213848 . A180324
[(h+1)/2] .. [(h+1)/2] .. A213849 . A049778 . A213850
h .......... C(2*h-2,h-1) A213853
...
Suppose that u = (u(n)) and v = (v(n)) are sequences having generating functions U(x) and V(x), respectively. Then the convolution u**v has generating function U(x)*V(x). Accordingly, if u and v are homogeneous linear recurrence sequences, then every row of the convolution array T satisfies the same homogeneous linear recurrence equation, which can be easily obtained from the denominator of U(x)*V(x). Also, every column of T has the same homogeneous linear recurrence as v.

Examples

			Northwest corner (the array is read by southwest falling antidiagonals):
  1,  4, 10, 20,  35,  56,  84, ...
  2,  7, 16, 30,  50,  77, 112, ...
  3, 10, 22, 40,  65,  98, 140, ...
  4, 13, 28, 50,  80, 119, 168, ...
  5, 16, 34, 60,  95, 140, 196, ...
  6, 19, 40, 70, 110, 161, 224, ...
T(6,1) = (1)**(6) = 6;
T(6,2) = (1,2)**(6,7) = 1*7+2*6 = 19;
T(6,3) = (1,2,3)**(6,7,8) = 1*8+2*7+3*6 = 40.
		

Crossrefs

Cf. A000027.

Programs

  • Mathematica
    b[n_] := n; c[n_] := n
    t[n_, k_] := Sum[b[k - i] c[n + i], {i, 0, k - 1}]
    TableForm[Table[t[n, k], {n, 1, 10}, {k, 1, 10}]]
    Flatten[Table[t[n - k + 1, k], {n, 12}, {k, n, 1, -1}]]
    r[n_] := Table[t[n, k], {k, 1, 60}]  (* A213500 *)
  • PARI
    t(n,k) = sum(i=0, k - 1, (k - i) * (n + i));
    tabl(nn) = {for(n=1, nn, for(k=1, n, print1(t(k,n - k + 1),", ");); print(););};
    tabl(12) \\ Indranil Ghosh, Mar 26 2017
    
  • Python
    def t(n, k): return sum((k - i) * (n + i) for i in range(k))
    for n in range(1, 13):
        print([t(k, n - k + 1) for k in range(1, n + 1)]) # Indranil Ghosh, Mar 26 2017

Formula

T(n,k) = 4*T(n,k-1) - 6*T(n,k-2) + 4*T(n,k-3) - T(n,k-4).
T(n,k) = 2*T(n-1,k) - T(n-2,k).
G.f. for row n: x*(n - (n - 1)*x)/(1 - x)^4.

A213590 Rectangular array: (row n) = b**c, where b(h) = h^2, c(h) = F(n-1+h), F = A000045 (Fibonacci numbers), n>=1, h>=1, and ** = convolution.

Original entry on oeis.org

1, 5, 1, 15, 6, 2, 36, 20, 11, 3, 76, 51, 35, 17, 5, 148, 112, 87, 55, 28, 8, 273, 224, 188, 138, 90, 45, 13, 485, 421, 372, 300, 225, 145, 73, 21, 839, 758, 694, 596, 488, 363, 235, 118, 34, 1424, 1324, 1243, 1115, 968, 788, 588, 380, 191, 55, 2384, 2263, 2163, 2001, 1809, 1564, 1276, 951, 615, 309, 89
Offset: 1

Views

Author

Clark Kimberling, Jun 19 2012

Keywords

Comments

Principal diagonal: A213504.
Antidiagonal sums: A213557.
Row 1, (1,4,9,16,...)**(1,1,2,3,5,...): A053808.
Row 2, (1,4,9,16,...)**(1,2,3,5,8,...): A213586.
Row 3, (1,4,9,16,...)**(2,3,5,8,13,...).
For a guide to related arrays, see A213500.

Examples

			Northwest corner (the array is read by falling antidiagonals):
1....5....15....36....76.....148
1....6....20....51....112....224
2....11...35....87....188....372
3....17...55....138...300....596
5....28...90....225...488....868
8....45...145...363...788....1564
13...73...235...588...1276...2532
		

Crossrefs

Programs

  • GAP
    F:=Fibonacci;; Flat(List([1..12],n-> List([1..n],k-> F(n+7)-F(k+6) -2*(n-k+1)*F(k+3)-(n-k+1)^2*F(k+1) ))) # G. C. Greubel, Jul 05 2019
  • Magma
    F:=Fibonacci; [[F(n+7) -F(k+6) -2*(n-k+1)*F(k+3) -(n-k+1)^2 *F(k+1): k in [1..n]]: n in [1..12]]; // G. C. Greubel, Jul 05 2019
    
  • Mathematica
    (* First program *)
    b[n_]:= n^2; c[n_]:= Fibonacci[n];
    T[n_, k_]:= Sum[b[k-i] c[n+i], {i, 0, k-1}]
    TableForm[Table[T[n, k], {n, 1, 10}, {k, 1, 10}]]
    Flatten[Table[T[n-k+1, k], {n, 12}, {k, n, 1, -1}]] (* A213590 *)
    r[n_]:= Table[T[n, k], {k, 40}]  (* columns of antidiagonal triangle *)
    Table[T[n, n], {n, 1, 40}] (* A213504 *)
    s[n_]:= Sum[T[i, n+1-i], {i, 1, n}]
    Table[s[n], {n, 1, 50}] (* A213557 *)
    (* Second program *)
    t[n_, k_]:= Fibonacci[n+7] - Fibonacci[k+6] - 2*(n-k+1)*Fibonacci[k+3] - (n-k+1)^2*Fibonacci[k+1]; Table[t[n, k], {n, 1, 12}, {k, 1, n}]//Flatten (* G. C. Greubel, Jul 05 2019 *)
  • PARI
    f=fibonacci; t(n,k) = f(n+7) -f(k+6) -2*(n-k+1)*f(k+3) -(n-k+1)^2 *f(k+1);
    for(n=1,12, for(k=1,n, print1(t(n,k), ", "))) \\ G. C. Greubel, Jul 05 2019
    
  • Sage
    f=fibonacci; [[f(n+7) -f(k+6) -2*(n-k+1)*f(k+3) - (n-k+1)^2* f(k+1) for k in (1..n)] for n in (1..12)] # G. C. Greubel, Jul 05 2019
    

Formula

Rows: T(n,k) = 4*T(n,k-1) -5*T(n,k-2) +*T(n,k-3) +2*T(n,k-4) -T(n,k-5).
Columns: T(n,k) = T(n-1,k) + T(n-2,k).
G.f. for row n: f(x)/g(x), where f(x) = F(n) + F(n+1)*x + F(n-1)*x^2 and g(x) = (1 - x - x^2)*(1 - x )^3.
T(n, k) = Fibonacci(n+k+6) - Fibonacci(n+6) - 2*k*Fibonacci(n+3) - k^2*Fibonacci(n+1). - G. C. Greubel, Jul 05 2019

A213571 Rectangular array: (row n) = b**c, where b(h) = h, c(h) = (n-1+h)^2, n>=1, h>=1, and ** = convolution.

Original entry on oeis.org

1, 5, 3, 16, 13, 7, 42, 38, 29, 15, 99, 94, 82, 61, 31, 219, 213, 198, 170, 125, 63, 466, 459, 441, 406, 346, 253, 127, 968, 960, 939, 897, 822, 698, 509, 255, 1981, 1972, 1948, 1899, 1809, 1654, 1402, 1021, 511, 4017, 4007, 3980, 3924, 3819, 3633
Offset: 1

Views

Author

Clark Kimberling, Jun 19 2012

Keywords

Comments

Principal diagonal: A213572.
Antidiagonal sums: A213581.
Row 1, (1,2,3,4,5,...)**(1,3,7,15,31,...): A002662.
Row 2, (1,2,3,4,5,...)**(3,7,15,31,63,...).
Row 3, (1,2,3,4,5,...)**(7,15,31,63,...).
For a guide to related arrays, see A213500.

Examples

			Northwest corner (the array is read by falling antidiagonals):
   1,    5,   16,   42,   99,  219, ...
   3,   13,   38,   94,  213,  459, ...
   7,   29,   82,  198,  441,  939, ...
  15,   61,  170,  406,  897, 1899, ...
  31,  125,  346,  822, 1809, 3819, ...
  ...
		

Crossrefs

Programs

  • GAP
    Flat(List([1..12], n-> List([1..n], k-> 2^(n+2) -2^k*(n-k+3) -Binomial(n-k+2, 2) ))); # G. C. Greubel, Jul 25 2019
  • Magma
    [2^(n+2) -2^k*(n-k+3) -Binomial(n-k+2, 2): k in [1..n], n in [1..12]]; // G. C. Greubel, Jul 25 2019
    
  • Mathematica
    (* First program *)
    b[n_]:= n; c[n_]:= -1 + 2^n;
    t[n_, k_]:= Sum[b[k-i] c[n+i], {i, 0, k-1}]
    TableForm[Table[t[n, k], {n, 1, 10}, {k, 1, 10}]]
    Flatten[Table[t[n-k+1, k], {n, 12}, {k, n, 1, -1}]]
    r[n_]:= Table[t[n, k], {k, 1, 60}]  (* A213571 *)
    d = Table[t[n, n], {n, 1, 40}] (* A213572 *)
    s[n_]:= Sum[t[i, n+1-i], {i, 1, n}]
    s1 = Table[s[n], {n, 1, 50}] (* A213581 *)
    (* Additional programs *)
    Table[2^(n+2) -2^k*(n-k+3) -Binomial[n-k+2, 2], {n,12}, {k, n}]//Flatten (* G. C. Greubel, Jul 25 2019 *)
  • PARI
    for(n=1,12, for(k=1,n, print1(2^(n+2) -2^k*(n-k+3) -binomial(n-k+2, 2), ", "))) \\ G. C. Greubel, Jul 25 2019
    
  • Sage
    [[2^(n+2) -2^k*(n-k+3) -binomial(n-k+2, 2) for k in (1..n)] for n in (1..12)] # G. C. Greubel, Jul 25 2019
    

Formula

T(n,k) = 5*T(n,k-1) - 9*T(n,k-2) + 7*T(n,k-3) - 2*T(n,k-4).
G.f. for row n: f(x)/g(x), where f(x) = x*(-1 + 2^n - (-2 + 2^n)*x) and g(x) = (1 - 2*x)(1 - x)^3.
T(n,k) = 2^(n+k+1) - 2^n*(k+2) - binomial(k+1, 2). - G. C. Greubel, Jul 25 2019

A213566 Rectangular array: (row n) = b**c, where b(h) = F(h), c(h) = (n-1+h)^2, F = A000045 (Fibonacci numbers), n>=1, h>=1, and ** = convolution.

Original entry on oeis.org

1, 5, 4, 15, 13, 9, 36, 33, 25, 16, 76, 71, 59, 41, 25, 148, 140, 120, 93, 61, 36, 273, 260, 228, 183, 135, 85, 49, 485, 464, 412, 340, 260, 185, 113, 64, 839, 805, 721, 604, 476, 351, 243, 145, 81, 1424, 1369, 1233, 1044, 836, 636, 456, 309, 181, 100
Offset: 1

Views

Author

Clark Kimberling, Jun 19 2012

Keywords

Comments

Principal diagonal: A213567.
Antidiagonal sums: A213570.
Row 1, (1,1,2,3,5,...)**(1,4,9,16,25,...): A053808.
Row 2, (1,1,2,3,5,...)**(4,9,16,25,...).
Row 3, (1,1,2,3,5,...)**(16,25,49,...).
For a guide to related arrays, see A213500.

Examples

			Northwest corner (the array is read by falling antidiagonals):
1....5....15....36....76
4....13...33....71....140
9....25...59....120...228
16...41...93....183...340
25...61...135...260...476
		

Crossrefs

Programs

  • GAP
    F:=Fibonacci;; Flat(List([1..12], n-> List([1..n], k-> k*(k*F(n-k+3) +2*F(n-k+4)) + F(n-k+7) -(k+2)*(2*n-k+4) -(n-k+1)^2 -4 ))); # G. C. Greubel, Jul 26 2019
  • Magma
    F:=Fibonacci; [k*(k*F(n-k+3) +2*F(n-k+4)) + F(n-k+7) -(k+2)*(2*n-k+4) -(n-k+1)^2 -4: k in [1..n], n in [1..12]]; // G. C. Greubel, Jul 26 2019
    
  • Mathematica
    (* First program *)
    b[n_]:= Fibonacci[n]; c[n_]:= n^2;
    t[n_, k_]:= Sum[b[k-i] c[n+i], {i, 0, k-1}]
    TableForm[Table[t[n, k], {n, 1, 10}, {k, 1, 10}]]
    Flatten[Table[t[n-k+1, k], {n, 12}, {k, n, 1, -1}]]
    r[n_]:= Table[t[n, k], {k, 1, 60}]  (* A213566 *)
    d = Table[t[n, n], {n, 1, 40}] (* A213567 *)
    s[n_]:= Sum[t[i, n+1-i], {i, 1, n}]
    s1 = Table[s[n], {n, 1, 50}] (* A213570 *)
    (* Second program *)
    With[{F = Fibonacci}, Table[k*(k*F[n-k+3] +2*F[n-k+4]) + F[n-k+7] -(k+2) *(2*n-k+4) -(n-k+1)^2 -4, {n, 12}, {k, n}]//Flatten] (* G. C. Greubel, Jul 26 2019 *)
  • PARI
    f=fibonacci;
    for(n=1,12, for(k=1,n, print1(k*(k*f(n-k+3) +2*f(n-k+4)) + f(n-k+7) -(k+2)*(2*n-k+4) -(n-k+1)^2 -4, ", "))) \\ G. C. Greubel, Jul 26 2019
    
  • Sage
    f=fibonacci; [[k*(k*f(n-k+3) +2*f(n-k+4)) + f(n-k+7) -(k+2)*(2*n-k+4) -(n-k+1)^2 -4 for k in (1..n)] for n in (1..12)] # G. C. Greubel, Jul 26 2019
    

Formula

T(n,k) = 4*T(n,k-1)-5*T(n,k-2)+T(n,k-3)+2*T(n,k-4)-T(n,k-5).
G.f. for row n: f(x)/g(x), where f(x) = x*(n^2 - (2*n^2 - 2*n - 1)*x + (n - 1)^2 *x^2) and g(x) = (1 - x - x^2)*(1 - x )^3.
T(n,k) = n*(n*F(k+2) + 2*F(k+3)) + F(k+6) - (n+2)*(2*k+n+2) - k^2 - 4, F = A000045. - Ehren Metcalfe, Jul 10 2019
Showing 1-6 of 6 results.