A213500
Rectangular array T(n,k): (row n) = b**c, where b(h) = h, c(h) = h + n - 1, n >= 1, h >= 1, and ** = convolution.
Original entry on oeis.org
1, 4, 2, 10, 7, 3, 20, 16, 10, 4, 35, 30, 22, 13, 5, 56, 50, 40, 28, 16, 6, 84, 77, 65, 50, 34, 19, 7, 120, 112, 98, 80, 60, 40, 22, 8, 165, 156, 140, 119, 95, 70, 46, 25, 9, 220, 210, 192, 168, 140, 110, 80, 52, 28, 10, 286, 275, 255, 228, 196, 161, 125, 90
Offset: 1
Northwest corner (the array is read by southwest falling antidiagonals):
1, 4, 10, 20, 35, 56, 84, ...
2, 7, 16, 30, 50, 77, 112, ...
3, 10, 22, 40, 65, 98, 140, ...
4, 13, 28, 50, 80, 119, 168, ...
5, 16, 34, 60, 95, 140, 196, ...
6, 19, 40, 70, 110, 161, 224, ...
T(6,1) = (1)**(6) = 6;
T(6,2) = (1,2)**(6,7) = 1*7+2*6 = 19;
T(6,3) = (1,2,3)**(6,7,8) = 1*8+2*7+3*6 = 40.
-
b[n_] := n; c[n_] := n
t[n_, k_] := Sum[b[k - i] c[n + i], {i, 0, k - 1}]
TableForm[Table[t[n, k], {n, 1, 10}, {k, 1, 10}]]
Flatten[Table[t[n - k + 1, k], {n, 12}, {k, n, 1, -1}]]
r[n_] := Table[t[n, k], {k, 1, 60}] (* A213500 *)
-
t(n,k) = sum(i=0, k - 1, (k - i) * (n + i));
tabl(nn) = {for(n=1, nn, for(k=1, n, print1(t(k,n - k + 1),", ");); print(););};
tabl(12) \\ Indranil Ghosh, Mar 26 2017
-
def t(n, k): return sum((k - i) * (n + i) for i in range(k))
for n in range(1, 13):
print([t(k, n - k + 1) for k in range(1, n + 1)]) # Indranil Ghosh, Mar 26 2017
A213587
Rectangular array: (row n) = b**c, where b(h) = F(h+1), c(h) = F(n+h), F = A000045 (Fibonacci numbers), n>=1, h>=1, and ** = convolution.
Original entry on oeis.org
1, 4, 2, 10, 7, 3, 22, 17, 11, 5, 45, 37, 27, 18, 8, 88, 75, 59, 44, 29, 13, 167, 146, 120, 96, 71, 47, 21, 310, 276, 234, 195, 155, 115, 76, 34, 566, 511, 443, 380, 315, 251, 186, 123, 55, 1020, 931, 821, 719, 614, 510, 406, 301, 199, 89, 1819, 1675, 1497, 1332, 1162, 994, 825, 657, 487, 322, 144
Offset: 1
Northwest corner (the array is read by falling antidiagonals):
1....4....10....22....45....88....167
2....7....17....37....75....146...276
3....11...27....59....120...234...443
5....18...44....96....195...380...719
8....29...71....155...315...614...1162
13...47...115...251...510...994...1881
-
Flat( List([1..12], n-> List([1..n], k-> ((n-k+1)*Lucas(1,-1, n+3)[2] - Fibonacci(n-k+1)*Lucas(1,-1,k-1)[2])/5 ))); # G. C. Greubel, Jul 08 2019
-
[[((n-k+1)*Lucas(n+3) - Fibonacci(n-k+1)*Lucas(k-1))/5: k in [1..n]]: n in [1..12]]; // G. C. Greubel, Jul 08 2019
-
(* First program *)
b[n_]:= Fibonacci[n+1]; c[n_]:= Fibonacci[n+1];
T[n_, k_]:= Sum[b[k-i] c[n+i], {i, 0, k-1}]
TableForm[Table[T[n, k], {n, 1, 10}, {k, 1, 10}]]
Flatten[Table[T[n-k+1, k], {n, 12}, {k, n, 1, -1}]] (* A213587 *)
r[n_]:= Table[T[n, k], {k, 40}] (* columns of antidiagonal triangle *)
Table[T[n, n], {n, 1, 40}] (* A213588 *)
s[n_]:= Sum[T[i, n+1-i], {i, 1, n}]
Table[s[n], {n, 1, 50}] (* A213589 *)
(* Second program *)
Table[((n-k+1)*LucasL[n+3] - Fibonacci[n-k+1]*LucasL[k-1])/5, {n, 12}, {k, n}]//Flatten (* G. C. Greubel, Jul 08 2019 *)
-
lucas(n) = fibonacci(n+1) + fibonacci(n-1);
t(n,k) = ((n-k+1)*lucas(n+3) - fibonacci(n-k+1)*lucas(k-1))/5;
for(n=1,12, for(k=1,n, print1(t(n,k), ", "))) \\ G. C. Greubel, Jul 08 2019
-
[[((n-k+1)*lucas_number2(n+3,1,-1) - fibonacci(n-k+1)* lucas_number2(k-1, 1,-1))/5 for k in (1..n)] for n in (1..12)] # G. C. Greubel, Jul 08 2019
A213589
Antidiagonal sums of the convolution array A213587.
Original entry on oeis.org
1, 6, 20, 55, 135, 308, 668, 1395, 2830, 5610, 10914, 20904, 39515, 73860, 136720, 250937, 457137, 827260, 1488190, 2662905, 4741946, 8407236, 14846100, 26120400, 45801925, 80064018, 139553708, 242597035, 420678315, 727792580
Offset: 1
-
F:=Fibonacci;; List([1..35], n-> (n+1)*((n+2)*F(n+3) + 2*(n-2)*F(n+2))/10) # G. C. Greubel, Jul 08 2019
-
F:=Fibonacci; [(n+1)*((n+2)*F(n+3) + 2*(n-2)*F(n+2))/10: n in [1..35]]; // G. C. Greubel, Jul 08 2019
-
(* First program *)
b[n_]:= Fibonacci[n+1]; c[n_]:= Fibonacci[n+1];
T[n_, k_]:= Sum[b[k-i] c[n+i], {i, 0, k-1}]
TableForm[Table[T[n, k], {n, 1, 10}, {k, 1, 10}]]
Flatten[Table[T[n-k+1, k], {n, 12}, {k, n, 1, -1}]] (* A213587 *)
r[n_]:= Table[T[n, k], {k, 40}] (* columns of antidiagonal triangle *)
Table[T[n, n], {n, 1, 40}] (* A213588 *)
s[n_]:= Sum[T[i, n+1-i], {i, 1, n}]
Table[s[n], {n, 1, 50}] (* A213589 *)
(* Second program *)
Table[(n+1)*(n*LucasL[n+3] -2*Fibonacci[n])/10, {n, 35}] (* G. C. Greubel, Jul 08 2019 *)
-
a(n):=(n+1)/2*sum((n-j)*binomial(n-j+1,j),j,0,(n+1)/2); /* Vladimir Kruchinin, Apr 09 2016 */
-
vector(35, n, f=fibonacci; (n+1)*((n+2)*f(n+3)+ 2*(n-2)*f(n+2) )/10) \\ G. C. Greubel, Jul 08 2019
-
f=fibonacci; [(n+1)*((n+2)*f(n+3)+ 2*(n-2)*f(n+2) )/10 for n in (1..35)] # G. C. Greubel, Jul 08 2019
Showing 1-3 of 3 results.
Comments