A213504
Principal diagonal of the convolution array A213590.
Original entry on oeis.org
1, 6, 35, 138, 488, 1564, 4733, 13734, 38711, 106846, 290496, 781264, 2084753, 5531846, 14619811, 38527834, 101328712, 266119228, 698218525, 1830665830, 4797572551, 12568780126, 32920653120, 86214096768, 225758326273
Offset: 1
- Clark Kimberling, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (6,-10,-2,15,-2,-8,0,1).
-
F:=Fibonacci;; List([1..40], n-> F(2*n+6) -F(n+6) -2*n*F(n+3) -n^2*F(n+1)); # G. C. Greubel, Jul 06 2019
-
F:=Fibonacci; [F(2*n+6) -F(n+6) -2*n*F(n+3) -n^2*F(n+1): n in [1..40]]; // G. C. Greubel, Jul 06 2019
-
(* First program *)
b[n_]:= n^2; c[n_]:= Fibonacci[n];
T[n_, k_]:= Sum[b[k-i] c[n+i], {i, 0, k-1}]
TableForm[Table[T[n, k], {n, 1, 10}, {k, 1, 10}]]
Flatten[Table[T[n-k+1, k], {n, 12}, {k, n, 1, -1}]] (* A213590 *)
r[n_]:= Table[T[n, k], {k, 40}] (* columns of antidiagonal triangle *)
Table[T[n, n], {n, 1, 40}] (* A213504 *)
s[n_]:= Sum[T[i, n+1-i], {i, 1, n}]
Table[s[n], {n, 1, 50}] (* A213557 *)
(* Second program *)
With[{F = Fibonacci}, Table[F[2*n+6] -F[n+6] -2*n*F[n+3] -n^2*F[n+1], {n, 40}]] (* G. C. Greubel, Jul 06 2019 *)
-
vector(40, n, my(f=fibonacci); f(2*n+6) - f(n+6) - 2*n*f(n+3) - n^2*f(n+1)) \\ G. C. Greubel, Jul 06 2019
-
f=fibonacci; [f(2*n+6) -f(n+6) -2*n*f(n+3) -n^2*f(n+1) for n in (1..40)] # G. C. Greubel, Jul 06 2019
A213557
Antidiagonal sums of the convolution array A213590.
Original entry on oeis.org
1, 6, 23, 70, 184, 438, 971, 2042, 4125, 8076, 15424, 28876, 53189, 96670, 173747, 309362, 546456, 958690, 1672015, 2901170, 5011321, 8621976, 14781888, 25263000, 43053769, 73186038, 124119311, 210055582, 354806200, 598245006
Offset: 1
-
F:=Fibonacci;; List([1..40], n-> n*F(n+7) -2*F(n+9) +2*(n^2+10*n+ 34)); # G. C. Greubel, Jul 06 2019
-
F:=Fibonacci; [n*F(n+7) -2*F(n+9) +2*(n^2+10*n+34): n in [1..40]]; // G. C. Greubel, Jul 06 2019
-
(* First program *)
b[n_]:= n^2; c[n_]:= Fibonacci[n];
T[n_, k_]:= Sum[b[k-i] c[n+i], {i, 0, k-1}]
TableForm[Table[T[n, k], {n, 1, 10}, {k, 1, 10}]]
Flatten[Table[T[n-k+1, k], {n, 12}, {k, n, 1, -1}]] (* A213590 *)
r[n_]:= Table[T[n, k], {k, 40}] (* columns of antidiagonal triangle *)
Table[T[n, n], {n, 1, 40}] (* A213504 *)
s[n_]:= Sum[T[i, n+1-i], {i, 1, n}]
Table[s[n], {n, 1, 50}] (* A213557 *)
(* Second program *)
With[{F = Fibonacci}, Table[n*F[n+7] -2*F[n+9] +2*(n^2+10*n+34), {n,40}]] (* G. C. Greubel, Jul 06 2019 *)
LinearRecurrence[{5,-8,2,6,-4,-1,1},{1,6,23,70,184,438,971},30] (* Harvey P. Dale, Jun 04 2025 *)
-
vector(40, n, f=fibonacci; n*f(n+7) -2*f(n+9) +2*(n^2+10*n+34)) \\ G. C. Greubel, Jul 06 2019
-
f=fibonacci; [n*f(n+7) -2*f(n+9) +2*(n^2+10*n+34) for n in (1..40)] # G. C. Greubel, Jul 06 2019
A213500
Rectangular array T(n,k): (row n) = b**c, where b(h) = h, c(h) = h + n - 1, n >= 1, h >= 1, and ** = convolution.
Original entry on oeis.org
1, 4, 2, 10, 7, 3, 20, 16, 10, 4, 35, 30, 22, 13, 5, 56, 50, 40, 28, 16, 6, 84, 77, 65, 50, 34, 19, 7, 120, 112, 98, 80, 60, 40, 22, 8, 165, 156, 140, 119, 95, 70, 46, 25, 9, 220, 210, 192, 168, 140, 110, 80, 52, 28, 10, 286, 275, 255, 228, 196, 161, 125, 90
Offset: 1
Northwest corner (the array is read by southwest falling antidiagonals):
1, 4, 10, 20, 35, 56, 84, ...
2, 7, 16, 30, 50, 77, 112, ...
3, 10, 22, 40, 65, 98, 140, ...
4, 13, 28, 50, 80, 119, 168, ...
5, 16, 34, 60, 95, 140, 196, ...
6, 19, 40, 70, 110, 161, 224, ...
T(6,1) = (1)**(6) = 6;
T(6,2) = (1,2)**(6,7) = 1*7+2*6 = 19;
T(6,3) = (1,2,3)**(6,7,8) = 1*8+2*7+3*6 = 40.
-
b[n_] := n; c[n_] := n
t[n_, k_] := Sum[b[k - i] c[n + i], {i, 0, k - 1}]
TableForm[Table[t[n, k], {n, 1, 10}, {k, 1, 10}]]
Flatten[Table[t[n - k + 1, k], {n, 12}, {k, n, 1, -1}]]
r[n_] := Table[t[n, k], {k, 1, 60}] (* A213500 *)
-
t(n,k) = sum(i=0, k - 1, (k - i) * (n + i));
tabl(nn) = {for(n=1, nn, for(k=1, n, print1(t(k,n - k + 1),", ");); print(););};
tabl(12) \\ Indranil Ghosh, Mar 26 2017
-
def t(n, k): return sum((k - i) * (n + i) for i in range(k))
for n in range(1, 13):
print([t(k, n - k + 1) for k in range(1, n + 1)]) # Indranil Ghosh, Mar 26 2017
Original entry on oeis.org
1, 5, 15, 36, 76, 148, 273, 485, 839, 1424, 2384, 3952, 6505, 10653, 17383, 28292, 45964, 74580, 120905, 195885, 317231, 513600, 831360, 1345536, 2177521, 3523733, 5701983, 9226500, 14929324, 24156724, 39087009, 63244757, 102332855, 165578768, 267912848
Offset: 0
- A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- J. Freixas and S. Kurz, The golden number and Fibonacci sequences in the design of voting structures, 2012. - From _N. J. A. Sloane_, Dec 29 2012
- W. Lang, Problem B-858, Fibonacci Quarterly, 36,3 (1998) 373-374; Solution, ibid. 37,2 (1999) 183-184.
- Index entries for linear recurrences with constant coefficients, signature (4,-5,1,2,-1).
Right-hand column 7 of triangle
A011794.
-
List([0..40], n-> Fibonacci(n+8) - (n^2 +8*n+20)); # G. C. Greubel, Jul 06 2019
-
[Fibonacci(n+8) - (n^2+8*n+20): n in [0..40]]; // G. C. Greubel, Jul 06 2019
-
Table[Fibonacci[n+8] -(n^2 +8*n+20), {n,0,40}] (* G. C. Greubel, Jul 06 2019 *)
LinearRecurrence[{4,-5,1,2,-1},{1,5,15,36,76},40] (* Harvey P. Dale, Apr 14 2022 *)
-
vector(40, n, n--; fibonacci(n+8) - (n^2 +8*n+20)) \\ G. C. Greubel, Jul 06 2019
-
[fibonacci(n+8) - (n^2 +8*n+20) for n in (0..20)] # G. C. Greubel, Jul 06 2019
A280154
a(n) = 5*Lucas(n).
Original entry on oeis.org
10, 5, 15, 20, 35, 55, 90, 145, 235, 380, 615, 995, 1610, 2605, 4215, 6820, 11035, 17855, 28890, 46745, 75635, 122380, 198015, 320395, 518410, 838805, 1357215, 2196020, 3553235, 5749255, 9302490, 15051745, 24354235, 39405980, 63760215, 103166195, 166926410, 270092605, 437019015
Offset: 0
Cf.
A022359: Lucas(n+5) + Lucas(n-5).
Cf. sequences with formula Fibonacci(n+k) + Fibonacci(n-k):
A006355 (k=0, without the initial 1),
A000032 (k=1),
A022086 (k=2),
A022112 (k=3, with an initial 4),
A022090 (k=4), this sequence (k=5),
A022352 (k=6).
-
[5*Lucas(n): n in [0..40]];
-
F := n -> combinat:-fibonacci(n):
seq(F(n+5) + F(n-5), n=0..38); # Peter Luschny, Dec 29 2016
-
Table[5 LucasL[n], {n, 0, 40}]
-
vector(40, n, n--; fibonacci(n+5)+fibonacci(n-5))
-
def A280154():
x, y = 10, 5
while True:
yield x
x, y = y, x + y
a = A280154(); print([next(a) for in range(39)]) # _Peter Luschny, Dec 29 2016
A213586
Antidiagonal sums of the convolution array A213584.
Original entry on oeis.org
1, 6, 20, 51, 112, 224, 421, 758, 1324, 2263, 3808, 6336, 10457, 17158, 28036, 45675, 74256, 120544, 195485, 316790, 513116, 830831, 1344960, 2176896, 3523057, 5701254, 9225716, 14928483, 24155824, 39086048, 63243733, 102331766
Offset: 1
From _John M. Campbell_, Jan 25 2013: (Start)
There are a(3) = 20 bit strings of length 3+5 with the pattern 01 at least thrice, and without the pattern 110:
00010101, 00100101, 00101001, 00101010, 00101011,
01000101, 01001001, 01001010, 01001011, 01010001,
01010010, 01010011, 01010100, 01010101, 01010111,
10010101, 10100101, 10101001, 10101010, 10101011.
(End)
-
List([1..40], n-> Fibonacci(n+8) -(21+10*n+2*n^2)) # G. C. Greubel, Jul 06 2019
-
[Fibonacci(n+8) -(21+10*n+2*n^2): n in [1..40]]; // G. C. Greubel, Jul 06 2019
-
(See A213584.)
With[{F = Fibonacci}, Table[F[n+8] -(21+10*n+2*n^2), {n,40}]] (* G. C. Greubel, Jul 06 2019 *)
-
vector(40, n, fibonacci(n+8) -(21+10*n+2*n^2)) \\ G. C. Greubel, Jul 06 2019
-
[fibonacci(n+8) -(21+10*n+2*n^2) for n in (1..40)] # G. C. Greubel, Jul 06 2019
Showing 1-6 of 6 results.
Comments