A213500
Rectangular array T(n,k): (row n) = b**c, where b(h) = h, c(h) = h + n - 1, n >= 1, h >= 1, and ** = convolution.
Original entry on oeis.org
1, 4, 2, 10, 7, 3, 20, 16, 10, 4, 35, 30, 22, 13, 5, 56, 50, 40, 28, 16, 6, 84, 77, 65, 50, 34, 19, 7, 120, 112, 98, 80, 60, 40, 22, 8, 165, 156, 140, 119, 95, 70, 46, 25, 9, 220, 210, 192, 168, 140, 110, 80, 52, 28, 10, 286, 275, 255, 228, 196, 161, 125, 90
Offset: 1
Northwest corner (the array is read by southwest falling antidiagonals):
1, 4, 10, 20, 35, 56, 84, ...
2, 7, 16, 30, 50, 77, 112, ...
3, 10, 22, 40, 65, 98, 140, ...
4, 13, 28, 50, 80, 119, 168, ...
5, 16, 34, 60, 95, 140, 196, ...
6, 19, 40, 70, 110, 161, 224, ...
T(6,1) = (1)**(6) = 6;
T(6,2) = (1,2)**(6,7) = 1*7+2*6 = 19;
T(6,3) = (1,2,3)**(6,7,8) = 1*8+2*7+3*6 = 40.
-
b[n_] := n; c[n_] := n
t[n_, k_] := Sum[b[k - i] c[n + i], {i, 0, k - 1}]
TableForm[Table[t[n, k], {n, 1, 10}, {k, 1, 10}]]
Flatten[Table[t[n - k + 1, k], {n, 12}, {k, n, 1, -1}]]
r[n_] := Table[t[n, k], {k, 1, 60}] (* A213500 *)
-
t(n,k) = sum(i=0, k - 1, (k - i) * (n + i));
tabl(nn) = {for(n=1, nn, for(k=1, n, print1(t(k,n - k + 1),", ");); print(););};
tabl(12) \\ Indranil Ghosh, Mar 26 2017
-
def t(n, k): return sum((k - i) * (n + i) for i in range(k))
for n in range(1, 13):
print([t(k, n - k + 1) for k in range(1, n + 1)]) # Indranil Ghosh, Mar 26 2017
A213590
Rectangular array: (row n) = b**c, where b(h) = h^2, c(h) = F(n-1+h), F = A000045 (Fibonacci numbers), n>=1, h>=1, and ** = convolution.
Original entry on oeis.org
1, 5, 1, 15, 6, 2, 36, 20, 11, 3, 76, 51, 35, 17, 5, 148, 112, 87, 55, 28, 8, 273, 224, 188, 138, 90, 45, 13, 485, 421, 372, 300, 225, 145, 73, 21, 839, 758, 694, 596, 488, 363, 235, 118, 34, 1424, 1324, 1243, 1115, 968, 788, 588, 380, 191, 55, 2384, 2263, 2163, 2001, 1809, 1564, 1276, 951, 615, 309, 89
Offset: 1
Northwest corner (the array is read by falling antidiagonals):
1....5....15....36....76.....148
1....6....20....51....112....224
2....11...35....87....188....372
3....17...55....138...300....596
5....28...90....225...488....868
8....45...145...363...788....1564
13...73...235...588...1276...2532
-
F:=Fibonacci;; Flat(List([1..12],n-> List([1..n],k-> F(n+7)-F(k+6) -2*(n-k+1)*F(k+3)-(n-k+1)^2*F(k+1) ))) # G. C. Greubel, Jul 05 2019
-
F:=Fibonacci; [[F(n+7) -F(k+6) -2*(n-k+1)*F(k+3) -(n-k+1)^2 *F(k+1): k in [1..n]]: n in [1..12]]; // G. C. Greubel, Jul 05 2019
-
(* First program *)
b[n_]:= n^2; c[n_]:= Fibonacci[n];
T[n_, k_]:= Sum[b[k-i] c[n+i], {i, 0, k-1}]
TableForm[Table[T[n, k], {n, 1, 10}, {k, 1, 10}]]
Flatten[Table[T[n-k+1, k], {n, 12}, {k, n, 1, -1}]] (* A213590 *)
r[n_]:= Table[T[n, k], {k, 40}] (* columns of antidiagonal triangle *)
Table[T[n, n], {n, 1, 40}] (* A213504 *)
s[n_]:= Sum[T[i, n+1-i], {i, 1, n}]
Table[s[n], {n, 1, 50}] (* A213557 *)
(* Second program *)
t[n_, k_]:= Fibonacci[n+7] - Fibonacci[k+6] - 2*(n-k+1)*Fibonacci[k+3] - (n-k+1)^2*Fibonacci[k+1]; Table[t[n, k], {n, 1, 12}, {k, 1, n}]//Flatten (* G. C. Greubel, Jul 05 2019 *)
-
f=fibonacci; t(n,k) = f(n+7) -f(k+6) -2*(n-k+1)*f(k+3) -(n-k+1)^2 *f(k+1);
for(n=1,12, for(k=1,n, print1(t(n,k), ", "))) \\ G. C. Greubel, Jul 05 2019
-
f=fibonacci; [[f(n+7) -f(k+6) -2*(n-k+1)*f(k+3) - (n-k+1)^2* f(k+1) for k in (1..n)] for n in (1..12)] # G. C. Greubel, Jul 05 2019
A213584
Rectangular array: (row n) = b**c, where b(h) = F(h+1), c(h) = n-1+h, where F=A000045 (Fibonacci numbers), n>=1, h>=1, and ** = convolution.
Original entry on oeis.org
1, 4, 2, 10, 7, 3, 21, 16, 10, 4, 40, 32, 22, 13, 5, 72, 59, 43, 28, 16, 6, 125, 104, 78, 54, 34, 19, 7, 212, 178, 136, 97, 65, 40, 22, 8, 354, 299, 231, 168, 116, 76, 46, 25, 9, 585, 496, 386, 284, 200, 135, 87, 52, 28, 10, 960, 816, 638, 473, 337, 232, 154, 98, 58, 31, 11
Offset: 1
Northwest corner (the array is read by falling antidiagonals):
1...4....10...21...40....72
2...7....16...32...59....104
3...10...22...43...78....136
4...13...28...54...97....168
5...16...34...65...116...200
6...19...40...76...135...232
-
Flat(List([1..12], n-> List([1..n], k-> Fibonacci(n-k+5) + k*Fibonacci(n-k+4) -(2*n+5)))) # G. C. Greubel, Jul 08 2019
-
[[Fibonacci(n-k+5) + k*Fibonacci(n-k+4) -(2*n+5): k in [1..n]]: n in [1..12]]; // G. C. Greubel, Jul 08 2019
-
(* First program *)
b[n_]:= Fibonacci[n+1]; c[n_]:= n;
T[n_, k_]:= Sum[b[k-i] c[n+i], {i, 0, k-1}]
TableForm[Table[T[n, k], {n, 1, 10}, {k, 1, 10}]]
Flatten[Table[T[n-k+1, k], {n, 12}, {k, n, 1, -1}]] (* A213584 *)
r[n_]:= Table[T[n, k], {k, 40}] (* columns of antidiagonal triangle *)
d = Table[T[n, n], {n, 1, 40}] (* A213585 *)
s[n_]:= Sum[T[i, n+1-i], {i, 1, n}]
s1 = Table[s[n], {n, 1, 50}] (* A213586 *)
(* Second program *)
Table[Fibonacci[n-k+5] + k*Fibonacci[n-k+4] -2*n-5, {n, 12}, {k, n}]//Flatten (* G. C. Greubel, Jul 08 2019 *)
-
t(n,k) = fibonacci(n-k+5) + k*fibonacci(n-k+4) -(2*n+5);
for(n=1,12, for(k=1,n, print1(t(n,k), ", "))) \\ G. C. Greubel, Jul 08 2019
-
[[fibonacci(n-k+5) + k*fibonacci(n-k+4) -(2*n+5) for k in (1..n)] for n in (1..12)] # G. C. Greubel, Jul 08 2019
A213585
Principal diagonal of the convolution array A213584.
Original entry on oeis.org
1, 7, 22, 54, 116, 232, 443, 821, 1490, 2664, 4710, 8256, 14373, 24883, 42878, 73594, 125880, 214664, 365087, 619425, 1048666, 1771852, 2988362, 5031744, 8459401, 14201887, 23811238, 39873726, 66695420, 111440104, 186016835
Offset: 1
-
F:=Fibonacci;; List([1..40], n-> F(n+4) +n*F(n+3) -(4*n+3)) # G. C. Greubel, Jul 08 2019
-
F:=Fibonacci; [F(n+4) +n*F(n+3) -(4*n+3): n in [1..40]]; // G. C. Greubel, Jul 08 2019
-
(* First program *)
b[n_]:= Fibonacci[n+1]; c[n_]:= n;
T[n_, k_]:= Sum[b[k-i] c[n+i], {i, 0, k-1}]
TableForm[Table[T[n, k], {n, 1, 10}, {k, 1, 10}]]
Flatten[Table[T[n-k+1, k], {n, 12}, {k, n, 1, -1}]] (* A213584 *)
r[n_]:= Table[T[n, k], {k, 40}] (* columns of antidiagonal triangle *)
d = Table[T[n, n], {n, 1, 40}] (* A213585 *)
s[n_]:= Sum[T[i, n+1-i], {i, 1, n}]
s1 = Table[s[n], {n, 1, 50}] (* A213586 *)
(* Second program *)
Table[Fibonacci[n+4] + n*Fibonacci[n+3] -4*n-3, {n, 40}] (* G. C. Greubel, Jul 08 2019 *)
-
vector(40, n, f=fibonacci; f(n+4) +n*f(n+3) -(4*n+3)) \\ G. C. Greubel, Jul 08 2019
-
f=fibonacci; [f(n+4) +n*f(n+3) -(4*n+3) for n in (1..40)] # G. C. Greubel, Jul 08 2019
Showing 1-4 of 4 results.
Comments