A213586
Antidiagonal sums of the convolution array A213584.
Original entry on oeis.org
1, 6, 20, 51, 112, 224, 421, 758, 1324, 2263, 3808, 6336, 10457, 17158, 28036, 45675, 74256, 120544, 195485, 316790, 513116, 830831, 1344960, 2176896, 3523057, 5701254, 9225716, 14928483, 24155824, 39086048, 63243733, 102331766
Offset: 1
From _John M. Campbell_, Jan 25 2013: (Start)
There are a(3) = 20 bit strings of length 3+5 with the pattern 01 at least thrice, and without the pattern 110:
00010101, 00100101, 00101001, 00101010, 00101011,
01000101, 01001001, 01001010, 01001011, 01010001,
01010010, 01010011, 01010100, 01010101, 01010111,
10010101, 10100101, 10101001, 10101010, 10101011.
(End)
-
List([1..40], n-> Fibonacci(n+8) -(21+10*n+2*n^2)) # G. C. Greubel, Jul 06 2019
-
[Fibonacci(n+8) -(21+10*n+2*n^2): n in [1..40]]; // G. C. Greubel, Jul 06 2019
-
(See A213584.)
With[{F = Fibonacci}, Table[F[n+8] -(21+10*n+2*n^2), {n,40}]] (* G. C. Greubel, Jul 06 2019 *)
-
vector(40, n, fibonacci(n+8) -(21+10*n+2*n^2)) \\ G. C. Greubel, Jul 06 2019
-
[fibonacci(n+8) -(21+10*n+2*n^2) for n in (1..40)] # G. C. Greubel, Jul 06 2019
A213585
Principal diagonal of the convolution array A213584.
Original entry on oeis.org
1, 7, 22, 54, 116, 232, 443, 821, 1490, 2664, 4710, 8256, 14373, 24883, 42878, 73594, 125880, 214664, 365087, 619425, 1048666, 1771852, 2988362, 5031744, 8459401, 14201887, 23811238, 39873726, 66695420, 111440104, 186016835
Offset: 1
-
F:=Fibonacci;; List([1..40], n-> F(n+4) +n*F(n+3) -(4*n+3)) # G. C. Greubel, Jul 08 2019
-
F:=Fibonacci; [F(n+4) +n*F(n+3) -(4*n+3): n in [1..40]]; // G. C. Greubel, Jul 08 2019
-
(* First program *)
b[n_]:= Fibonacci[n+1]; c[n_]:= n;
T[n_, k_]:= Sum[b[k-i] c[n+i], {i, 0, k-1}]
TableForm[Table[T[n, k], {n, 1, 10}, {k, 1, 10}]]
Flatten[Table[T[n-k+1, k], {n, 12}, {k, n, 1, -1}]] (* A213584 *)
r[n_]:= Table[T[n, k], {k, 40}] (* columns of antidiagonal triangle *)
d = Table[T[n, n], {n, 1, 40}] (* A213585 *)
s[n_]:= Sum[T[i, n+1-i], {i, 1, n}]
s1 = Table[s[n], {n, 1, 50}] (* A213586 *)
(* Second program *)
Table[Fibonacci[n+4] + n*Fibonacci[n+3] -4*n-3, {n, 40}] (* G. C. Greubel, Jul 08 2019 *)
-
vector(40, n, f=fibonacci; f(n+4) +n*f(n+3) -(4*n+3)) \\ G. C. Greubel, Jul 08 2019
-
f=fibonacci; [f(n+4) +n*f(n+3) -(4*n+3) for n in (1..40)] # G. C. Greubel, Jul 08 2019
A213500
Rectangular array T(n,k): (row n) = b**c, where b(h) = h, c(h) = h + n - 1, n >= 1, h >= 1, and ** = convolution.
Original entry on oeis.org
1, 4, 2, 10, 7, 3, 20, 16, 10, 4, 35, 30, 22, 13, 5, 56, 50, 40, 28, 16, 6, 84, 77, 65, 50, 34, 19, 7, 120, 112, 98, 80, 60, 40, 22, 8, 165, 156, 140, 119, 95, 70, 46, 25, 9, 220, 210, 192, 168, 140, 110, 80, 52, 28, 10, 286, 275, 255, 228, 196, 161, 125, 90
Offset: 1
Northwest corner (the array is read by southwest falling antidiagonals):
1, 4, 10, 20, 35, 56, 84, ...
2, 7, 16, 30, 50, 77, 112, ...
3, 10, 22, 40, 65, 98, 140, ...
4, 13, 28, 50, 80, 119, 168, ...
5, 16, 34, 60, 95, 140, 196, ...
6, 19, 40, 70, 110, 161, 224, ...
T(6,1) = (1)**(6) = 6;
T(6,2) = (1,2)**(6,7) = 1*7+2*6 = 19;
T(6,3) = (1,2,3)**(6,7,8) = 1*8+2*7+3*6 = 40.
-
b[n_] := n; c[n_] := n
t[n_, k_] := Sum[b[k - i] c[n + i], {i, 0, k - 1}]
TableForm[Table[t[n, k], {n, 1, 10}, {k, 1, 10}]]
Flatten[Table[t[n - k + 1, k], {n, 12}, {k, n, 1, -1}]]
r[n_] := Table[t[n, k], {k, 1, 60}] (* A213500 *)
-
t(n,k) = sum(i=0, k - 1, (k - i) * (n + i));
tabl(nn) = {for(n=1, nn, for(k=1, n, print1(t(k,n - k + 1),", ");); print(););};
tabl(12) \\ Indranil Ghosh, Mar 26 2017
-
def t(n, k): return sum((k - i) * (n + i) for i in range(k))
for n in range(1, 13):
print([t(k, n - k + 1) for k in range(1, n + 1)]) # Indranil Ghosh, Mar 26 2017
A023554
Convolution of natural numbers >= 3 and (Fib(2), Fib(3), Fib(4), ...).
Original entry on oeis.org
3, 10, 22, 43, 78, 136, 231, 386, 638, 1047, 1710, 2784, 4523, 7338, 11894, 19267, 31198, 50504, 81743, 132290, 214078, 346415, 560542, 907008, 1467603, 2374666, 3842326, 6217051, 10059438, 16276552, 26336055, 42612674, 68948798, 111561543, 180510414
Offset: 1
-
F:=Fibonacci; List([1..40], n-> F(n+5)+2*F(n+3)-(2*n+9)); # G. C. Greubel, Jul 08 2019
-
F:=Fibonacci; [F(n+5)+2*F(n+3)-(2*n+9): n in [1..40]]; // G. C. Greubel, Jul 08 2019
-
Table[Fibonacci[n+5] + 2*Fibonacci[n+3] -2*n-9, {n, 40}] (* G. C. Greubel, Jul 08 2019 *)
-
Vec(x*(1+x)*(3-2*x) / ((1-x)^2*(1-x-x^2)) + O(x^60)) \\ Colin Barker, Feb 20 2017
-
vector(40, n, f=fibonacci; f(n+5)+2*f(n+3)-(2*n+9)) \\ G. C. Greubel, Jul 08 2019
-
f=fibonacci; [f(n+5)+2*f(n+3)-(2*n+9) for n in (1..40)] # G. C. Greubel, Jul 08 2019
Showing 1-4 of 4 results.
Comments