cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A010049 Second-order Fibonacci numbers.

Original entry on oeis.org

0, 1, 1, 3, 5, 10, 18, 33, 59, 105, 185, 324, 564, 977, 1685, 2895, 4957, 8462, 14406, 24465, 41455, 70101, 118321, 199368, 335400, 563425, 945193, 1583643, 2650229, 4430290, 7398330, 12342849, 20573219, 34262337, 57013865, 94800780, 157517532, 261545777
Offset: 0

Views

Author

Keywords

Comments

Number of parts in all compositions of n+1 with no 1's. E.g. a(5)=10 because in the compositions of 6 with no part equal to 1, namely 6,4+2,3+3,2+4,2+2+2, the total number of parts is 10. - Emeric Deutsch, Dec 10 2003

References

  • D. E. Knuth, The Art of Computer Programming. Addison-Wesley, Reading, MA, Vol. 1, p. 83.
  • Cornelius Gerrit Lekkerkerker, Voorstelling van natuurlijke getallen door een som van getallen van Fibonacci, Simon Stevin, Vol. 29 (1952), pp. 190-195.

Crossrefs

Programs

  • GAP
    a:=List([0..40],n->Sum([0..n-1],k->(k+1)*Binomial(n-k-1,k)));; Print(a); # Muniru A Asiru, Dec 31 2018
    
  • Haskell
    a010049 n = a010049_list !! n
    a010049_list = uncurry c $ splitAt 1 a000045_list where
       c us (v:vs) = (sum $ zipWith (*) us (1 : reverse us)) : c (v:us) vs
    -- Reinhard Zumkeller, Nov 01 2013
    
  • Magma
    [((2*n+3)*Fibonacci(n)-n*Fibonacci(n-1))/5: n in [0..40]]; // Vincenzo Librandi, Dec 31 2018
    
  • Maple
    with(combinat): A010049 := proc(n) options remember; if n <= 1 then n else A010049(n-1)+A010049(n-2)+fibonacci(n-2); fi; end;
  • Mathematica
    CoefficientList[Series[(z - z^2)/(z^2 + z - 1)^2, {z, 0, 100}], z] (* Vladimir Joseph Stephan Orlovsky, Jul 01 2011 *)
    CoefficientList[Series[x (1 - x) / (1 - x - x^2)^2, {x, 0, 60}], x] (* Vincenzo Librandi, Jun 11 2013 *)
    LinearRecurrence[{2, 1, -2, -1}, {0, 1, 1, 3}, 38] (* Amiram Eldar, Jan 11 2020 *)
  • PARI
    a(n)=([0,1,0,0; 0,0,1,0; 0,0,0,1; -1,-2,1,2]^n*[0;1;1;3])[1,1] \\ Charles R Greathouse IV, Jul 20 2016
    
  • Sage
    def A010049():
        a, b, c, d = 0, 1, 1, 3
        while True:
            yield a
            a, b, c, d = b, c, d, 2*(d-b)+c-a
    a = A010049(); [next(a) for i in range(38)]  # Peter Luschny, Nov 20 2013
    
  • SageMath
    def A010049(n): return (1/5)*(n*lucas_number2(n-1, 1, -1) + 3*fibonacci(n))
    [A010049(n) for n in (0..40)] # G. C. Greubel, Apr 06 2022

Formula

First differences of A001629.
From Wolfdieter Lang, May 03 2000: (Start)
a(n) = ((2*n+3)*F(n) - n*F(n-1))/5, F(n)=A000045(n) (Fibonacci numbers) (Turban reference eq.(2.12)).
G.f.: x*(1-x)/(1-x-x^2)^2. (Turban reference eq.(2.10)). (End)
Recurrence: a(0)=0, a(1)=1, a(2)=1, a(n+2) = a(n+1) + a(n) + F(n). - Benoit Cloitre, Sep 02 2002
Set A(n) = a(n+1) + a(n-1), B(n) = a(n+1) - a(n-1). Then A(n+2) = A(n+1) + A(n) + Lucas(n) and B(n+2) = B(n+1) + B(n) + Fibonacci(n). The polynomials F_2(n,-x) = Sum_{k=0..n} C(n,k)*a(n-k)*(-x)^k appear to satisfy a Riemann hypothesis; their zeros appear to lie on the vertical line Re x = 1/2 in the complex plane. Compare with the polynomials F(n,-x) defined in A094440. For a similar conjecture for polynomials involving the second-order Lucas numbers see A134410. - Peter Bala, Oct 24 2007
a(n) = -A001629(n+2) + 2*A001629(n+1) + A000045(n+1). - R. J. Mathar, Nov 16 2007
Starting (1, 1, 3, 5, 10, ...), = row sums of triangle A135830. - Gary W. Adamson, Nov 30 2007
a(n) = F(n) + Sum_{k=0..n-1} F(k)*F(n-1-k), where F = A000045. - Reinhard Zumkeller, Nov 01 2013
a(n) = Sum_{k=0..n-1} (k+1)*binomial(n-k-1, k). - Peter Luschny, Nov 20 2013
a(n) = Sum_{i=0..n-1} Sum_{j=0..i} F(j-1)*F(i-j-1), where F = A000045. - Carlos A. Rico A., Jul 14 2016
a(n) = Sum_{k = F(n+1)..F(n+2)-1} A007895(k), where F(n) is the n-th Fibonacci number (Lekkerkerker, 1952). - Amiram Eldar, Jan 11 2020
a(n) = (1/5)*(n*A000032(n-1) + 3*A000045(n)). - G. C. Greubel, Apr 06 2022
E.g.f.: 2*exp(x/2)*(5*x*cosh(sqrt(5)*x/2) + 3*sqrt(5)*sinh(sqrt(5)*x/2))/25. - Stefano Spezia, Dec 04 2023

Extensions

More terms from Emeric Deutsch, Dec 10 2003

A279741 T(n,k)=Number of nXk 0..1 arrays with no element equal to a strict majority of its horizontal and antidiagonal neighbors, with the exception of exactly one element, and with new values introduced in order 0 sequentially upwards.

Original entry on oeis.org

0, 0, 0, 2, 2, 0, 2, 6, 8, 0, 5, 14, 35, 26, 0, 8, 26, 106, 168, 80, 0, 15, 48, 286, 736, 766, 240, 0, 26, 84, 746, 2948, 4940, 3402, 708, 0, 46, 146, 1887, 11434, 29140, 32430, 14827, 2062, 0, 80, 250, 4700, 42494, 167904, 281350, 209558, 63680, 5944, 0, 139
Offset: 1

Views

Author

R. H. Hardin, Dec 18 2016

Keywords

Comments

Table starts
.0.....0.......2........2..........5...........8............15..............26
.0.....2.......6.......14.........26..........48............84.............146
.0.....8......35......106........286.........746..........1887............4700
.0....26.....168......736.......2948.......11434.........42494..........154886
.0....80.....766.....4940......29140......167904........927615.........5029822
.0...240....3402....32430.....281350.....2407152......19743140.......158848594
.0...708...14827...209558....2672708....33954530.....413326300......4935790522
.0..2062...63680..1337624...25057618...472691878....8539248826....151323545378
.0..5944..270313..8453760..232453138..6511502806..174560480712...4589874672896
.0.16990.1136546.52990574.2137856646.88926626284.3537506044402.137999764109606

Examples

			Some solutions for n=4 k=4
..0..1..1..0. .0..1..0..1. .0..1..0..1. .0..1..0..0. .0..1..0..0
..1..0..1..0. .1..0..1..1. .1..0..1..0. .0..1..0..0. .0..1..1..0
..0..1..1..0. .0..0..0..1. .0..1..1..0. .0..1..1..0. .1..0..0..0
..0..1..0..1. .1..0..1..0. .0..0..1..1. .0..1..0..1. .0..1..1..0
		

Crossrefs

Row 1 is A006367(n-1).

Formula

Empirical for column k:
k=1: a(n) = a(n-1)
k=2: a(n) = 6*a(n-1) -11*a(n-2) +6*a(n-3) -a(n-4)
k=3: a(n) = 10*a(n-1) -35*a(n-2) +54*a(n-3) -45*a(n-4) +20*a(n-5) -4*a(n-6) for n>7
k=4: [order 16] for n>17
k=5: [order 25] for n>26
k=6: [order 64] for n>65
Empirical for row n:
n=1: a(n) = 2*a(n-1) +a(n-2) -2*a(n-3) -a(n-4) for n>5
n=2: a(n) = 3*a(n-1) -a(n-2) -3*a(n-3) +a(n-4) +a(n-5)
n=3: [order 16] for n>18
n=4: [order 45] for n>50

A281765 T(n,k)=Number of nXk 0..1 arrays with no element unequal to a strict majority of its horizontal, diagonal and antidiagonal neighbors, with the exception of exactly one element, and with new values introduced in order 0 sequentially upwards.

Original entry on oeis.org

0, 0, 0, 2, 4, 0, 2, 14, 10, 0, 5, 40, 47, 20, 0, 8, 110, 152, 90, 38, 0, 15, 280, 609, 560, 201, 68, 0, 26, 698, 2138, 2808, 1872, 374, 120, 0, 46, 1696, 7466, 13968, 12191, 5948, 672, 208, 0, 80, 4052, 25798, 68362, 85844, 49986, 18358, 1172, 358, 0, 139, 9564, 87397
Offset: 1

Views

Author

R. H. Hardin, Jan 29 2017

Keywords

Comments

Table starts
.0...0....2......2........5.........8..........15...........26.............46
.0...4...14.....40......110.......280.........698.........1696...........4052
.0..10...47....152......609......2138........7466........25798..........87397
.0..20...90....560.....2808.....13968.......68362.......323280........1529974
.0..38..201...1872....12191.....85844......589990......3845590.......25703392
.0..68..374...5948....49986....502276.....4845178.....43943360......414035752
.0.120..672..18358...201450...2848436....38998648....491290688.....6531040026
.0.208.1172..55048...795220..15817652...306847534...5380228500...100838834642
.0.358.2015.162120..3098932..86332266..2376142873..58064622712..1533079336619
.0.612.3442.471340.11944444.465260812.18172170592.619082149716.23019093115418

Examples

			Some solutions for n=4 k=4
..0..0..0..0. .0..0..1..1. .0..0..1..0. .0..1..0..0. .0..1..1..0
..0..0..1..1. .0..1..1..1. .0..1..0..1. .1..0..1..1. .0..0..1..1
..1..1..1..1. .0..0..1..1. .1..1..1..0. .0..1..1..1. .0..0..1..1
..1..1..0..1. .0..1..1..1. .1..1..0..0. .1..0..1..1. .0..1..1..1
		

Crossrefs

Column 2 is A279262.
Row 1 is A006367(n-1).

Formula

Empirical for column k:
k=1: a(n) = a(n-1)
k=2: a(n) = 3*a(n-1) -a(n-2) -3*a(n-3) +a(n-4) +a(n-5)
k=3: a(n) = 4*a(n-1) -4*a(n-2) -2*a(n-3) +4*a(n-4) -a(n-6) for n>11
k=4: [order 29] for n>32
k=5: [order 48] for n>57
Empirical for row n:
n=1: a(n) = 2*a(n-1) +a(n-2) -2*a(n-3) -a(n-4) for n>5
n=2: [order 9]
n=3: [order 40] for n>41

A105422 Triangle read by rows: T(n,k) is the number of compositions of n having exactly k parts equal to 1.

Original entry on oeis.org

1, 0, 1, 1, 0, 1, 1, 2, 0, 1, 2, 2, 3, 0, 1, 3, 5, 3, 4, 0, 1, 5, 8, 9, 4, 5, 0, 1, 8, 15, 15, 14, 5, 6, 0, 1, 13, 26, 31, 24, 20, 6, 7, 0, 1, 21, 46, 57, 54, 35, 27, 7, 8, 0, 1, 34, 80, 108, 104, 85, 48, 35, 8, 9, 0, 1, 55, 139, 199, 209, 170, 125, 63, 44, 9, 10, 0, 1, 89, 240, 366, 404, 360
Offset: 0

Views

Author

Emeric Deutsch, Apr 07 2005

Keywords

Comments

T(n,k) is also the number of length n bit strings beginning with 0 having k singletons. Example: T(4,2)=3 because we have 0010, 0100 and 0110. - Emeric Deutsch, Sep 21 2008
The cyclic version of this array is A320341(n,k), which counts the (unmarked) cyclic compositions of n with exactly k parts equal to 1, with a minor exception for k=0. The sequence (A320341(n, k=0) - 1: n >= 1) counts the (unmarked) cyclic compositions of n with no parts equal to 1. - Petros Hadjicostas, Jan 08 2019
Also the convolution triangle of Fibonacci(n-2). # Peter Luschny, Oct 07 2022
T(n,k) is the number of length n+1 bit strings beginning and ending with 0 having k length 2 substrings 00. This is equivalent to the compositions interpretation because each m part corresponds to a length m+1 bit string beginning with 0 and ending with the next 0 bit. Thus a substring 00 corresponds to a 1 part. Example: T(4,2)=3 because we have 00010 for 112, 00100 for 121 and 01000 for 211. - Michael Somos, Sep 24 2024
In the Baccherini et al. 2008 link on page 81: "Bloom[3] studies the number of singles in all the 2^n n-length bit strings, where a single is any isolated 1 or 0, i.e., any run of length 1. Let R_{n,k} be the number of n-length bit strings beginning with 0 and having k singles." Here T(n,k) = R_{n,k}. This combinatorial interpretation is equivalent to my previous comment since a part of size k corresponds to run of k identical bits and also to a length k+1 bit string with 0s only at the beginning and end. - Michael Somos, Sep 25 2024

Examples

			T(6,2) = 9 because we have (1,1,4), (1,4,1), (4,1,1), (1,1,2,2), (1,2,1,2), (1,2,2,1), (2,1,1,2), (2,1,2,1) and (2,2,1,1).
Triangle begins:
00:    1;
01:    0,   1;
02:    1,   0,   1;
03:    1,   2,   0,   1;
04:    2,   2,   3,   0,   1;
05:    3,   5,   3,   4,   0,   1;
06:    5,   8,   9,   4,   5,   0,   1;
07:    8,  15,  15,  14,   5,   6,   0,   1;
08:   13,  26,  31,  24,  20,   6,   7,   0,  1;
09:   21,  46,  57,  54,  35,  27,   7,   8,  0,  1;
10:   34,  80, 108, 104,  85,  48,  35,   8,  9,  0,  1;
11:   55, 139, 199, 209, 170, 125,  63,  44,  9, 10,  0,  1;
12:   89, 240, 366, 404, 360, 258, 175,  80, 54, 10, 11,  0, 1;
13:  144, 413, 666, 780, 725, 573, 371, 236, 99, 65, 11, 12, 0, 1;
...
		

Crossrefs

Column 0 yields A000045 (the Fibonacci numbers). Column 1 yields A006367. Column 2 yields A105423. Row sums yield A011782. Cyclic version is A320341.
T(2n,n) gives A222763.

Programs

  • Maple
    G:=(1-z)/(1-z-z^2-t*z+t*z^2): Gser:=simplify(series(G,z=0,15)): P[0]:=1: for n from 1 to 14 do P[n]:=coeff(Gser,z^n) od: for n from 0 to 13 do seq(coeff(t*P[n],t^k),k=1..n+1) od; # yields sequence in triangular form
    # second Maple program:
    T:= proc(n) option remember; local j; if n=0 then 1
          else []; for j to n do zip((x, y)-> x+y, %,
          [`if`(j=1, 0, [][]), T(n-j)], 0) od; %[] fi
        end:
    seq(T(n), n=0..20);  # Alois P. Heinz, Nov 05 2012
    # Uses function PMatrix from A357368. Adds a row above and a column to the left.
    PMatrix(10, n -> combinat:-fibonacci(n-2)); # Peter Luschny, Oct 07 2022
  • Mathematica
    nn = 10; a = x/(1 - x) - x + y x;
    CoefficientList[CoefficientList[Series[1/(1 - a), {x, 0, nn}], x], y] // Flatten (* Geoffrey Critzer, Dec 23 2011 *)
    T[ n_, k_] := Which[k<0 || k>n, 0, n<2, Boole[n==k], True, T[n, k] =  T[n-1, k] + T[n-1, k-1] + T[n-2, k] - T[n-2, k-1] ]; (* Michael Somos, Sep 24 2024 *)
  • PARI
    {T(n, k) = if(k<0 || k>n, 0, n<2, n==k, T(n-1, k) + T(n-1, k-1) + T(n-2, k) - T(n-2, k-1) )}; /* Michael Somos, Sep 24 2024 */

Formula

G.f.: (1-z)/(1 - z - z^2 - tz + tz^2).
T(n,k) = T(n-1,k) + T(n-2,k) + T(n-1,k-1) - T(n-2,k-1), T(0,0)=1, T(1,0)=0. - Philippe Deléham, Nov 18 2009
If the triangle's columns are transposed into rows, then T(n,k) can be interpreted as the number of compositions of n+k having exactly k 1's. Then g.f.: ((1-x)/(1-x-x^2))^(k-1) and T(n,k) = T(n-2,k) + T(n-1,k) - T(n-1, k-1) + T(n, k-1). Also, Sum_{j=1..n} T(n-j, j) = 2^(n-1), the number of compositions of n. - Gregory L. Simay, Jun 28 2019

A279158 T(n,k)=Number of nXk 0..1 arrays with no element equal to a strict majority of its king-move neighbors, with the exception of exactly one element, and with new values introduced in order 0 sequentially upwards.

Original entry on oeis.org

0, 0, 0, 2, 0, 2, 2, 4, 4, 2, 5, 12, 20, 12, 5, 8, 30, 72, 72, 30, 8, 15, 72, 255, 428, 255, 72, 15, 26, 162, 874, 2294, 2294, 874, 162, 26, 46, 356, 2903, 11932, 20104, 11932, 2903, 356, 46, 80, 766, 9336, 60304, 166552, 166552, 60304, 9336, 766, 80, 139, 1616, 29578
Offset: 1

Views

Author

R. H. Hardin, Dec 06 2016

Keywords

Comments

Table starts
..0....0.....2.......2.........5...........8............15..............26
..0....0.....4......12........30..........72...........162.............356
..2....4....20......72.......255.........874..........2903............9336
..2...12....72.....428......2294.......11932.........60304..........297092
..5...30...255....2294.....20104......166552.......1331471........10508084
..8...72...874...11932....166552.....2145788......26724386.......330704288
.15..162..2903...60304...1331471....26724386.....517476726.....10025433990
.26..356..9336..297092..10508084...330704288...10025433990....305617345164
.46..766.29578.1443498..81594334..4027185426..191191601644...9168921176076
.80.1616.92528.6930508.624717186.48341053840.3592564336954.270873567300596

Examples

			Some solutions for n=4 k=4
..0..1..0..1. .0..1..1..0. .0..0..1..0. .0..1..0..1. .0..1..0..0
..0..0..1..0. .0..0..1..0. .1..0..1..1. .0..1..0..1. .0..0..1..1
..1..1..0..1. .1..1..0..1. .1..0..0..0. .1..1..0..1. .1..1..0..0
..0..0..1..0. .0..1..0..1. .1..0..1..1. .0..0..0..1. .0..1..0..1
		

Crossrefs

Column 1 is A006367(n-1).

Formula

Empirical for column k:
k=1: a(n) = 2*a(n-1) +a(n-2) -2*a(n-3) -a(n-4) for n>5
k=2: a(n) = 4*a(n-1) -5*a(n-2) +6*a(n-3) -12*a(n-4) +8*a(n-5) -4*a(n-6) +8*a(n-7)
k=3: [order 22] for n>23
k=4: [order 56] for n>57

A279268 T(n,k)=Number of nXk 0..1 arrays with no element equal to a strict majority of its horizontal and vertical neighbors, with the exception of exactly one element, and with new values introduced in order 0 sequentially upwards.

Original entry on oeis.org

0, 0, 0, 2, 4, 2, 2, 10, 10, 2, 5, 20, 29, 20, 5, 8, 38, 86, 86, 38, 8, 15, 68, 240, 400, 240, 68, 15, 26, 120, 626, 1592, 1592, 626, 120, 26, 46, 208, 1603, 5888, 9042, 5888, 1603, 208, 46, 80, 358, 4030, 21882, 51568, 51568, 21882, 4030, 358, 80, 139, 612, 9973, 79112
Offset: 1

Views

Author

R. H. Hardin, Dec 08 2016

Keywords

Comments

Table starts
..0...0.....2......2........5..........8..........15............26
..0...4....10.....20.......38.........68.........120...........208
..2..10....29.....86......240........626........1603..........4030
..2..20....86....400.....1592.......5888.......21882.........79112
..5..38...240...1592.....9042......51568......283450.......1526492
..8..68...626...5888....51568.....429716.....3490152......27850092
.15.120..1603..21882...283450....3490152....42093113.....498160278
.26.208..4030..79112..1526492...27850092...498160278....8746623144
.46.358..9973.281754..8110769..218952412..5812405127..151499712450
.80.612.24388.991292.42557410.1701805320.67071788240.2595668095672

Examples

			Some solutions for n=4 k=4
..0..1..1..0. .0..0..1..1. .0..1..1..1. .0..1..0..0. .0..1..0..1
..1..0..0..1. .1..1..0..1. .1..0..1..0. .1..1..1..1. .0..0..1..0
..0..1..0..1. .0..0..1..0. .0..0..1..1. .0..1..0..0. .1..0..1..0
..0..1..1..0. .1..0..1..0. .1..1..0..0. .0..1..0..1. .0..1..0..1
		

Crossrefs

Column 1 is A006367(n-1).

Formula

Empirical for column k:
k=1: a(n) = 2*a(n-1) +a(n-2) -2*a(n-3) -a(n-4) for n>5
k=2: a(n) = 3*a(n-1) -a(n-2) -3*a(n-3) +a(n-4) +a(n-5)
k=3: a(n) = 4*a(n-1) -4*a(n-2) +2*a(n-3) -4*a(n-4) -a(n-6) for n>9
k=4: [order 28] for n>31
k=5: [order 58] for n>69

A279466 T(n,k)=Number of nXk 0..1 arrays with no element equal to a strict majority of its horizontal, vertical and antidiagonal neighbors, with the exception of exactly one element, and with new values introduced in order 0 sequentially upwards.

Original entry on oeis.org

0, 0, 0, 2, 2, 2, 2, 6, 6, 2, 5, 20, 33, 20, 5, 8, 66, 180, 180, 66, 8, 15, 210, 1024, 1722, 1024, 210, 15, 26, 658, 5228, 15484, 15484, 5228, 658, 26, 46, 2036, 26670, 129914, 223261, 129914, 26670, 2036, 46, 80, 6236, 134438, 1079792, 3086910, 3086910
Offset: 1

Views

Author

R. H. Hardin, Dec 12 2016

Keywords

Comments

Table starts
..0.....0.......2.........2...........5..............8...............15
..0.....2.......6........20..........66............210..............658
..2.....6......33.......180........1024...........5228............26670
..2....20.....180......1722.......15484.........129914..........1079792
..5....66....1024.....15484......223261........3086910.........41706415
..8...210....5228....129914.....3086910.......69493918.......1529974962
.15...658...26670...1079792....41706415.....1529974962......54755104784
.26..2036..134438...8845592...555052466....33126514762....1926654903560
.46..6236..670407..71540206..7290902341...707716447612...66854006751350
.80.18928.3310176.572555634.94741575142.14949807134092.2293311539588776

Examples

			Some solutions for n=4 k=4
..0..0..1..0. .0..1..0..0. .0..1..0..0. .0..1..0..0. .0..0..0..0
..1..0..1..0. .0..0..1..0. .1..1..1..1. .0..0..1..1. .1..1..1..1
..1..0..0..1. .1..0..1..1. .0..1..0..0. .1..0..1..0. .0..0..1..0
..1..1..0..0. .0..1..0..1. .1..0..1..0. .1..1..0..1. .0..1..0..1
		

Crossrefs

Column 1 is A006367(n-1).

Formula

Empirical for column k:
k=1: a(n) = 2*a(n-1) +a(n-2) -2*a(n-3) -a(n-4) for n>5
k=2: [order 10]
k=3: [order 36]

A280161 T(n,k)=Number of nXk 0..1 arrays with no element unequal to a strict majority of its horizontal, vertical and antidiagonal neighbors, with the exception of exactly one element, and with new values introduced in order 0 sequentially upwards.

Original entry on oeis.org

0, 0, 0, 2, 4, 2, 2, 8, 8, 2, 5, 18, 31, 18, 5, 8, 40, 94, 94, 40, 8, 15, 92, 305, 424, 305, 92, 15, 26, 208, 950, 1854, 1854, 950, 208, 26, 46, 470, 2901, 7628, 10677, 7628, 2901, 470, 46, 80, 1060, 8728, 30874, 58852, 58852, 30874, 8728, 1060, 80, 139, 2384, 26068
Offset: 1

Views

Author

R. H. Hardin, Dec 27 2016

Keywords

Comments

Table starts
..0....0.....2......2.......5.........8.........15..........26...........46
..0....4.....8.....18......40........92........208.........470.........1060
..2....8....31.....94.....305.......950.......2901........8728........26068
..2...18....94....424....1854......7628......30874......123312.......488256
..5...40...305...1854...10677.....58852.....318220.....1695030......8941285
..8...92...950...7628...58852....434790....3138340....22348406....157294986
.15..208..2901..30874..318220...3138340...30089398...285461736...2671391625
.26..470..8728.123312.1695030..22348406..285461736..3612425586..45045404794
.46.1060.26068.488256.8941285.157294986.2671391625.45045404794.748382706193

Examples

			Some solutions for n=4 k=4
..0..0..1..1. .0..0..0..0. .0..1..1..1. .0..0..1..1. .0..0..0..0
..0..1..0..1. .0..0..0..1. .0..1..1..0. .0..0..1..1. .1..1..0..1
..1..1..1..0. .0..0..1..1. .0..0..0..0. .0..0..0..0. .1..0..1..1
..1..1..0..0. .1..1..1..1. .0..1..0..0. .0..1..0..0. .0..0..1..1
		

Crossrefs

Column 1 is A006367(n-1).

Formula

Empirical for column k:
k=1: a(n) = 2*a(n-1) +a(n-2) -2*a(n-3) -a(n-4) for n>5
k=2: a(n) = 2*a(n-1) +3*a(n-2) -2*a(n-3) -6*a(n-4) -4*a(n-5) -a(n-6) for n>8
k=3: [order 14] for n>19
k=4: [order 30] for n>36
k=5: [order 70] for n>80

A280233 T(n,k)=Number of nXk 0..1 arrays with no element unequal to a strict majority of its king-move neighbors, with the exception of exactly one element, and with new values introduced in order 0 sequentially upwards.

Original entry on oeis.org

0, 0, 0, 2, 4, 2, 2, 6, 6, 2, 5, 8, 9, 8, 5, 8, 14, 16, 16, 14, 8, 15, 24, 29, 48, 29, 24, 15, 26, 42, 52, 116, 116, 52, 42, 26, 46, 72, 95, 288, 355, 288, 95, 72, 46, 80, 124, 168, 678, 1102, 1102, 678, 168, 124, 80, 139, 212, 298, 1600, 3376, 4260, 3376, 1600, 298, 212
Offset: 1

Views

Author

R. H. Hardin, Dec 29 2016

Keywords

Comments

Table starts
..0...0...2....2.....5......8......15.......26........46.........80.........139
..0...4...6....8....14.....24......42.......72.......124........212.........362
..2...6...9...16....29.....52......95......168.......298........522.........911
..2...8..16...48...116....288.....678.....1600......3766.......8704.......20040
..5..14..29..116...355...1102....3376.....9860.....29091......84644......244759
..8..24..52..288..1102...4260...16282....59648....220330.....806580.....2928596
.15..42..95..678..3376..16282...80825...377706...1780344....8321484....38431266
.26..72.168.1600..9860..59648..377706..2212304..13139746...77599244...451789710
.46.124.298.3766.29091.220330.1780344.13139746..98743448..738470180..5428286449
.80.212.522.8704.84644.806580.8321484.77599244.738470180.7008698040.65195901946

Examples

			Some solutions for n=4 k=4
..0..0..0..1. .0..1..1..1. .0..0..0..0. .0..0..0..1. .0..0..0..0
..0..0..0..0. .1..1..1..1. .0..0..0..0. .0..0..1..1. .0..0..0..0
..0..0..0..0. .1..1..1..1. .0..0..1..0. .1..1..1..1. .1..0..0..0
..0..0..0..0. .1..1..1..1. .0..0..0..0. .1..1..1..1. .0..0..0..0
		

Crossrefs

Column 1 is A006367(n-1).

Formula

Empirical for column k:
k=1: a(n) = 2*a(n-1) +a(n-2) -2*a(n-3) -a(n-4) for n>5
k=2: a(n) = 2*a(n-1) +a(n-2) -2*a(n-3) -a(n-4) for n>7
k=3: a(n) = 2*a(n-1) +a(n-2) -2*a(n-3) -a(n-4) for n>7
k=4: [order 16] for n>19
k=5: [order 22] for n>25

A289207 a(n) = max(0, n-2).

Original entry on oeis.org

0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69
Offset: 0

Views

Author

Keywords

Comments

This simple sequence is such that there is one and only one array of differences D(n,k) where the first and the second upper subdiagonal is a(n).
The rows of this array are existing sequences of the OEIS, prepended with zeros:
row 0 is A118425,
row 1 is A006478,
row 2 is A001629,
row 3 is A010049,
row 4 is A006367,
row 5 is not in the OEIS.
It can be observed that a(n) is an autosequence of the first kind whose second kind mate is A199969. In addition, the structure of the array D(n,k) shows that the first row is an autosequence.
For n = 1 to 8, rows with only one leading zero are also autosequences.

Examples

			Array of differences begin:
   0,   0,   0,   0,  0,   0,  0,  1,  4, 12, 30, 68, ...
   0,   0,   0,   0,  0,   0,  1,  3,  8, 18, 38, 76, ...
   0,   0,   0,   0,  0,   1,  2,  5, 10, 20, 38, 71, ...
   0,   0,   0,   0,  1,   1,  3,  5, 10, 18, 33, 59, ...
   0,   0,   0,   1,  0,   2,  2,  5,  8, 15, 26, 46, ...
   0,   0,   1,  -1,  2,   0,  3,  3,  7, 11, 20, 34, ...
   0,   1,  -2,   3, -2,   3,  0,  4,  4,  9, 14, 24, ...
   1,  -3,   5,  -5,  5,  -3,  4,  0,  5,  5, 10, 16, ...
  -4,   8, -10,  10, -8,   7, -4,  5,  0,  6,  6, 17, ...
  12, -18,  20, -18, 15, -11,  9, -5,  6,  0,  7,  7, ...
  ...
		

Crossrefs

Essentially the same as A023444. Cf. A001477, A118425, A006478, A001629, A010049, A006367, A199969.

Programs

  • Mathematica
    a[n_] := Max[0, n - 2];
    D[n_, k_] /; k == n + 1 := a[n]; D[n_, k_] /; k == n + 2 := a[n]; D[n_, k_] /; k > n + 2 := D[n, k] = Sum[D[n + 1, j], {j, 0, k - 1}]; D[n_, k_] /; k <= n := D[n, k] = D[n - 1, k + 1] - D[n - 1, k];
    Table[D[n, k], {n, 0, 11}, {k, 0, 11}]

Formula

G.f.: x^3 / (1-x)^2.
Showing 1-10 of 13 results. Next