A099428 Duplicate of A099920.
0, 0, 2, 3, 8, 15, 30, 56, 104, 189, 340, 605, 1068, 1872, 3262, 5655, 9760, 16779
Offset: 0
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
The triangle T(n,k) begins: n\k 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ... 0: 1 1: 0 1 2: 1 0 1 3: 0 2 0 1 4: 1 0 3 0 1 5: 0 3 0 4 0 1 6: 1 0 6 0 5 0 1 7: 0 4 0 10 0 6 0 1 8: 1 0 10 0 15 0 7 0 1 9: 0 5 0 20 0 21 0 8 0 1 10: 1 0 15 0 35 0 28 0 9 0 1 11: 0 6 0 35 0 56 0 36 0 10 0 1 12: 1 0 21 0 70 0 84 0 45 0 11 0 1 13: 0 7 0 56 0 126 0 120 0 55 0 12 0 1 14: 1 0 28 0 126 0 210 0 165 0 66 0 13 0 1 15: 0 8 0 84 0 252 0 330 0 220 0 78 0 14 0 1 ... reformatted by _Wolfdieter Lang_, Jul 29 2014. ------------------------------------------------------------------------
A168561:=proc(n,k) if n-k mod 2 = 0 then binomial((n+k)/2,k) else 0 fi end proc: seq(seq(A168561(n,k),k=0..n),n=0..12) ; # yields sequence in triangular form
Table[If[EvenQ[n + k], Binomial[(n + k)/2, k], 0], {n, 0, 10}, {k, 0, n}] // Flatten (* G. C. Greubel, Apr 16 2017 *)
T(n,k) = if ((n+k) % 2, 0, binomial((n+k)/2,k)); tabl(nn) = for (n=0, nn, for (k=0, n, print1(T(n,k), ", ")); print();); \\ Michel Marcus, Oct 09 2016
a045925 n = a045925_list !! (n-1) a045925_list = zipWith (*) [0..] a000045_list -- Reinhard Zumkeller, Oct 01 2012
[n*Fibonacci(n): n in [0..60]]; // Vincenzo Librandi, Apr 23 2011
a:= n-> n*(<<0|1>, <1|1>>^n)[1,2]: seq(a(n), n=0..37); # Alois P. Heinz, May 07 2021
Table[Fibonacci[n]*n, {n, 0, 33}] (* Zerinvary Lajos, Jul 09 2009 *) LinearRecurrence[{2, 1, -2, -1}, {0, 1, 2, 6}, 34] (* or *) CoefficientList[ Series[(x + x^3)/(-1 + x + x^2)^2, {x, 0, 35}], x] (* Robert G. Wilson v, Nov 14 2015 *)
Lucas(n)=fibonacci(n-1)+fibonacci(n+1) a(n)=polcoeff(sum(m=1,n,eulerphi(m)*fibonacci(m)*x^m/(1-Lucas(m)*x^m+(-1)^m*x^(2*m)+x*O(x^n))),n) \\ Paul D. Hanna, Jan 12 2012
a(n)=n*fibonacci(n) \\ Charles R Greathouse IV, Jan 12 2012
concat(0, Vec(x*(1+x^2)/(1-x-x^2)^2 + O(x^100))) \\ Altug Alkan, Oct 28 2015
a(4) = 7: {4, 13, 31, 112, 121, 211, 1111}. a(5) = 13: {5, 14, 41, 23, 32, 113, 131, 311, 1112, 1121, 1211, 2111, 11111}. a(6) = 23: {6, 15, 51, 33, 114, 141, 411, 123, 132, 213, 231, 312, 321, 1113, 1131, 1311, 3111, 11112, 11121, 11211, 12111, 21111, 111111}.
T:=n->((2*n+3)*Fibonacci(n)-n*Fibonacci(n-1))/5; a:=List([0..40],n->T(n+1)-T(n-1)); # Muniru A Asiru, Oct 28 2018
I:=[1,1,2,4]; [n le 4 select I[n] else 2*Self(n-1)+Self(n-2)-2*Self(n-3)-Self(n-4): n in [1..40]]; // Vincenzo Librandi, Oct 29 2018
a:= n-> (<<0|1|0|0>, <0|0|1|0>, <0|0|0|1>, <-1|-2|1|2>>^n. <<1, 1, 2, 4>>)[1, 1]: seq(a(n), n=0..40);
LinearRecurrence[{2, 1, -2, -1}, {1, 1, 2, 4}, 40] (* Jean-François Alcover, Feb 18 2017 *) CoefficientList[Series[((-1 + x)^2 (1 + x))/(-1 + x + x^2)^2, {x, 0, 50}], x] (* Stefano Spezia, Oct 29 2018 *)
x='x+O('x^50); Vec((x+1)*(x-1)^2/(x^2+x-1)^2) \\ Altug Alkan, Oct 02 2018
a(5) = 13 because Fib(5) = 5, times 5 = 25 and subtract sum(Fib(5)) = 12 to get 13.
with(combinat, fibonacci): for i from 1 to 30 do i*fibonacci(i) - sum(fibonacci(k), k=0..i); end do;
Table[n Fibonacci[n] - Fibonacci[n + 2] + 1, {n, 0, 40}] (* Stefan Steinerberger, Feb 22 2008 *) LinearRecurrence[{3, -1, -3, 1, 1}, {0, 0, 0, 2, 5}, 40] (* Harvey P. Dale, May 17 2016 *)
a(n)=n*fibonacci(n) - fibonacci(n+2) + 1 \\ Charles R Greathouse IV, Oct 07 2015
Triangle T(n,k), 0 <= k < n, n >= 1, begins: 1; 1, 2; 2, 3, 4; 3, 8, 8, 8; 5, 15, 25, 20, 16; 8, 30, 55, 70, 48, 32; 13, 56, 125, 175, 184, 112, 64; 21, 104, 262, 440, 512, 464, 256, 128; ... T(7,1) = 30 + 2*8 + 15 - 5 = 56. T(6,1) = 15 + 2*5 + 8 - 3 = 30.
A164975 := proc(n,k) option remember; if n <=0 or k > n or k< 1 then 0; elif k= 1 then combinat[fibonacci](n); else procname(n-1,k)+2*procname(n-1,k-1)+procname(n-2,k)-procname(n-2,k-1) ; end if; end proc: # R. J. Mathar, Jan 27 2011
u[1, x_] := 1; v[1, x_] := 1; z = 16; u[n_, x_] := u[n - 1, x] + (x + 1)*v[n - 1, x]; v[n_, x_] := u[n - 1, x] + 2 x*v[n - 1, x]; Table[Expand[u[n, x]], {n, 1, z/2}] Table[Expand[v[n, x]], {n, 1, z/2}] cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; TableForm[cu] Flatten[%] (* A209125 *) Table[Expand[v[n, x]], {n, 1, z}] cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; TableForm[cv] Flatten[%] (* A164975 *) (* Clark Kimberling, Mar 05 2012 *) With[{nmax = 10}, Rest[CoefficientList[CoefficientList[Series[ x/(1 - 2*y*x-x-x^2+y*x^2), {x,0,nmax}, {y,0,nmax}], x], y]]//Flatten] (* G. C. Greubel, Jan 14 2018 *)
0; 1,1; 1,1,1; 2,2,2,2; 3,3,3,3,3; 5,5,5,5,5,5; ...
a108037 n k = a108037_tabl !! n !! k a108037_row n = a108037_tabl !! n a108037_tabl = zipWith replicate [1..] a000045_list -- Reinhard Zumkeller, Oct 07 2012
Table[Table[Fibonacci[n],{n+1}],{n,0,12}]//Flatten (* Harvey P. Dale, May 07 2017 *)
from math import isqrt from sympy import fibonacci def A108037(n): return int(fibonacci((m:=isqrt(k:=n+1<<1))-(k<=m*(m+1)))) # Chai Wah Wu, Nov 07 2024
I:=[0, 1, 6, 12]; [n le 4 select I[n] else 2*Self(n-1) + Self(n-2) - 2*Self(n-3) - Self(n-4): n in [1..40]]; // Vincenzo Librandi, Dec 13 2012
Table[LucasL[n, 1]*n, {n, 0, 36}] (* Zerinvary Lajos, Jul 09 2009 *) CoefficientList[Series[x * (1 + 4*x - x^2)/(1 - x - x^2)^2, {x, 0, 40}], x] (* Vincenzo Librandi, Dec 13 2012 *) LinearRecurrence[{2,1,-2,-1},{0,1,6,12},40] (* Harvey P. Dale, Apr 03 2013 *)
# The function 'fibrec' is defined in A354044. function A178521(n) n < 2 && return BigInt(0) a, b = fibrec(n - 1) a*n + (n - 1)*b end println([A178521(n) for n in 0:35]) # Peter Luschny, May 16 2022
with(combinat); seq(n*fibonacci(n+1)-fibonacci(n), n = 0 .. 35);
Table[n Fibonacci[n + 1] - Fibonacci[n], {n, 0, 40}] (* Harvey P. Dale, Apr 21 2011 *) Table[(n - 1) Fibonacci[n] + n Fibonacci[n - 1], {n, 0, 40}] (* Bruno Berselli, Dec 06 2013 *)
concat(vector(2), Vec(x^2*(x+3)/(x^2+x-1)^2 + O(x^50))) \\ Colin Barker, Jul 26 2017
The triangle T(n,k) begins: n\k: 0 1 2 3 4 5 6 7 8 9 10 11 0: 0 0 0 1 1: 0 1 2 1 2: 0 5 8 3 3: 0 16 30 16 2 4: 0 45 104 81 24 2 5: 0 121 340 356 170 35 2 6: 0 320 1068 1411 932 315 48 2 7: 0 841 3262 5209 4396 2079 532 63 2 8: 0 2205 9760 18281 18784 11440 4144 840 80 2 9: 0 5776 28746 61786 74838 55809 26226 7602 1260 99 2 10: 0 15125 83620 202841 282980 249815 144488 54690 13080 1815 120 2 ...
v = 3 + 2*x; w = Sqrt[5 + 4*x]; row[n_] := CoefficientList[x*(x^2 - 2) + x*(((v - w)/2)^n + ((v + w)/2)^n), x]; Array[row, 15, 0] // Flatten
v : 3 + 2*x$ w : sqrt(5 + 4*x)$ p(n, x) := expand(x*(x^2 - 2) + x*(((v - w)/2)^n + ((v + w)/2)^n))$ for n:0 thru 15 do print(makelist(ratcoef(p(n, x), x, k), k, 0, max(3, n + 1)));
Comments