cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A133673 a(n) = n*L(n) + (n-1)*L(n-1) where L(n) is the Lucas number.

Original entry on oeis.org

7, 18, 40, 83, 163, 311, 579, 1060, 1914, 3419, 6053, 10637, 18575, 32262, 55772, 96019, 164711, 281635, 480171, 816536, 1385262, 2345083, 3962185, 6682393, 11251543, 18916026, 31756624, 53243795, 89160619, 149135759, 249187923, 415946572, 693648930
Offset: 2

Views

Author

Parthasarathy Nambi, Dec 29 2007

Keywords

Comments

For n>2, two evens followed by four odds.

Examples

			For n=2, a(2) = 7;
For n=21, a(21) = 816536.
		

Crossrefs

Programs

  • Mathematica
    Total/@Partition[Times@@@Table[{n,LucasL[n]},{n,30}],2,1] (* or *) LinearRecurrence[{2,1,-2,-1},{7,18,40,83},30](* Harvey P. Dale, Oct 21 2011 *)

Formula

From R. J. Mathar, Jul 08 2009, Jul 13 2009: (Start)
G.f.: -x^2*(-7-4*x+3*x^2+x^3)/(x^2+x-1)^2.
a(n) = 2*a(n-1)+a(n-2)-2*a(n-3)-a(n-4).
a(n) = A146005(n) + A146005(n-1). (End)

Extensions

Typo in A-numbers corrected by R. J. Mathar, Jul 13 2009
More terms from Harvey P. Dale, Oct 21 2011

A343539 a(n) = (2*n+1)*Lucas(2*n+1).

Original entry on oeis.org

1, 12, 55, 203, 684, 2189, 6773, 20460, 60707, 177631, 513996, 1473817, 4194025, 11858508, 33345679, 93320819, 260079468, 722163365, 1998685277, 5515470636, 15180186491, 41680890247, 114197428620, 312260427313, 852296004049, 2322415005324, 6318599122663, 17166545274395
Offset: 0

Views

Author

Harry Richman, Apr 16 2021

Keywords

Crossrefs

Bisection of A146005.

Programs

  • Magma
    [(2*n+1)*Lucas(2*n+1) : n in [0..40]]; // Wesley Ivan Hurt, Apr 19 2021
    
  • Mathematica
    Table[(2n+1) LucasL[2n+1], {n, 0, 30}] (* Wesley Ivan Hurt, Apr 19 2021 *)
  • PARI
    a(n) = (2*n+1)*(fibonacci(2*n+2)+fibonacci(2*n)) \\ Andrew Howroyd, Jan 01 2024

Formula

G.f.: (1-x)*(1 + 7*x + x^2)/(1 - 3*x + x^2)^2.
a(n) = (2*n+1)*A000032(2*n+1).
a(n) = A146005(2*n+1).
a(n) = 6*a(n-1) - 11*a(n-2) + 6*a(n-3) - a(n-4). - Wesley Ivan Hurt, Apr 19 2021

A343543 a(n) = n*Lucas(2*n).

Original entry on oeis.org

0, 3, 14, 54, 188, 615, 1932, 5901, 17656, 52002, 151270, 435633, 1244184, 3528759, 9949058, 27907470, 77933552, 216784731, 600935076, 1660672257, 4576522540, 12580566138, 34504747354, 94440719589, 257998970928, 703593828075, 1915713858422, 5208304147686
Offset: 0

Views

Author

Harry Richman, Apr 19 2021

Keywords

Crossrefs

Cf. A000032, A005248 (L(2n)), A146005 (n*L(n)), A317408 (n*Fib(2n)).

Programs

  • Magma
    [n*Lucas(2*n) : n in [0..40]]; // Wesley Ivan Hurt, Apr 19 2021
    
  • Mathematica
    Table[n*LucasL[2*n], {n, 0, 30}] (* Amiram Eldar, Apr 19 2021 *)
  • PARI
    a(n) = n*(fibonacci(2*n+1)+fibonacci(2*n-1)) \\ Andrew Howroyd, Jan 01 2024

Formula

a(n) = n*A005248(n).
G.f.: x*(3 - 4*x + 3*x^2)/(1 - 3*x + x^2)^2.
a(n) = 6*a(n-1) - 11*a(n-2) + 6*a(n-3) - a(n-4). - Wesley Ivan Hurt, Apr 19 2021
Showing 1-3 of 3 results.