A268995 T(n,k)=Number of nXk binary arrays with some element plus some horizontally or antidiagonally adjacent neighbor totalling two not more than once.
2, 4, 4, 7, 13, 8, 13, 35, 41, 16, 23, 103, 174, 126, 32, 41, 278, 805, 849, 379, 64, 72, 763, 3331, 6009, 4083, 1121, 128, 126, 2037, 14080, 37987, 43512, 19416, 3272, 256, 219, 5421, 57287, 244397, 421450, 308112, 91491, 9449, 512, 379, 14264, 232449, 1506570
Offset: 1
Examples
Some solutions for n=4 k=4 ..1..1..0..1. .1..0..0..1. .0..0..0..0. .0..0..1..0. .0..0..0..1 ..0..0..0..1. .1..1..0..1. .0..1..0..0. .1..0..1..0. .0..0..0..1 ..0..1..0..1. .0..0..0..0. .0..1..0..1. .1..0..0..0. .0..0..1..0 ..0..0..0..0. .1..0..1..0. .0..0..0..0. .1..0..1..0. .1..0..1..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..799
Formula
Empirical for column k:
k=1: a(n) = 2*a(n-1)
k=2: a(n) = 6*a(n-1) -11*a(n-2) +6*a(n-3) -a(n-4)
k=3: a(n) = 10*a(n-1) -31*a(n-2) +30*a(n-3) -9*a(n-4)
k=4: a(n) = 16*a(n-1) -88*a(n-2) +200*a(n-3) -208*a(n-4) +96*a(n-5) -16*a(n-6) for n>7
k=5: [order 8] for n>9
k=6: [order 10] for n>12
k=7: [order 14] for n>16
Empirical for row n:
n=1: a(n) = 2*a(n-1) +a(n-2) -2*a(n-3) -a(n-4)
n=2: a(n) = 2*a(n-1) +5*a(n-2) -4*a(n-3) -11*a(n-4) -6*a(n-5) -a(n-6)
n=3: [order 9]
n=4: [order 16]
n=5: [order 26]
n=6: [order 42]
n=7: [order 68]
Comments