cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A263578 Positive values of k such that A014286(k) is divisible by k.

Original entry on oeis.org

1, 3, 18, 24, 42, 48, 72, 96, 120, 138, 144, 192, 216, 240, 258, 264, 282, 288, 336, 360, 384, 402, 432, 480, 498, 576, 600, 618, 642, 648, 672, 714, 720, 744, 762, 768, 864, 912, 960, 978, 1002, 1008, 1080, 1104, 1152, 1200, 1224, 1296, 1320, 1338, 1344, 1362
Offset: 1

Views

Author

Altug Alkan, Oct 22 2015

Keywords

Comments

Sequence is interesting because of the values of a(n) - a(n-1). For a(n) < 10000, the most common repeated values of a(n) - a(n-1) are 24 and 6. Will this situation continue?

Examples

			a(2) = 3 because Fibonacci(1) + 2 * Fibonacci(2) + 3 * Fibonacci(3) = 9, which is divisible by 3.
		

Crossrefs

Programs

  • Mathematica
    Select[Range@ 1584, Divisible[Sum[i Fibonacci@ i, {i, 0, #}], #] &] (* Michael De Vlieger, Oct 22 2015 *)
  • PARI
    for(n=1, 2000, if(sum(k=1, n, k*fibonacci(k)) % n == 0, print1(n, ", ")))

A204922 Ordered differences of Fibonacci numbers.

Original entry on oeis.org

1, 2, 1, 4, 3, 2, 7, 6, 5, 3, 12, 11, 10, 8, 5, 20, 19, 18, 16, 13, 8, 33, 32, 31, 29, 26, 21, 13, 54, 53, 52, 50, 47, 42, 34, 21, 88, 87, 86, 84, 81, 76, 68, 55, 34, 143, 142, 141, 139, 136, 131, 123, 110, 89, 55, 232, 231, 230, 228, 225, 220, 212, 199, 178
Offset: 1

Views

Author

Clark Kimberling, Jan 21 2012

Keywords

Comments

For a guide to related sequences, see A204892. For numbers not in A204922, see A050939.
From Emanuele Munarini, Mar 29 2012: (Start)
Diagonal elements = Fibonacci numbers F(n+1) (A000045)
First column = Fibonacci numbers - 1 (A000071);
Second column = Fibonacci numbers - 2 (A001911);
Row sums = n*F(n+3) - F(n+2) + 2 (A014286);
Central coefficients = F(2*n+1) - F(n+1) (A096140).
(End)

Examples

			a(1) = s(2) - s(1) = F(3) - F(2) = 2-1 = 1, where F=A000045;
a(2) = s(3) - s(1) = F(4) - F(2) = 3-1 = 2;
a(3) = s(3) - s(2) = F(4) - F(3) = 3-2 = 1;
a(4) = s(4) - s(1) = F(5) - F(2) = 5-1 = 4.
From _Emanuele Munarini_, Mar 29 2012: (Start)
Triangle begins:
   1;
   2,  1;
   4,  3,  2;
   7,  6,  5,  3;
  12, 11, 10,  8,  5;
  20, 19, 18, 16, 13,  8;
  33, 32, 31, 29, 26, 21, 13;
  54, 53, 52, 50, 47, 42, 34, 21;
  88, 87, 86, 84, 81, 76, 68, 55, 34;
  ... (End)
		

Crossrefs

Programs

  • Magma
    /* As triangle */ [[Fibonacci(n+2)-Fibonacci(k+1) : k in [1..n]]: n in [1.. 15]]; // Vincenzo Librandi, Aug 04 2015
    
  • Mathematica
    (See the program at A204924.)
  • Maxima
    create_list(fib(n+3)-fib(k+2),n,0,20,k,0,n); /* Emanuele Munarini, Mar 29 2012 */
    
  • PARI
    {T(n,k) = fibonacci(n+2) - fibonacci(k+1)};
    for(n=1,15, for(k=1,n, print1(T(n,k), ", "))) \\ G. C. Greubel, Feb 03 2019
    
  • Sage
    [[fibonacci(n+2) - fibonacci(k+1) for k in (1..n)] for n in (1..15)] # G. C. Greubel, Feb 03 2019

Formula

From Emanuele Munarini, Mar 29 2012: (Start)
T(n,k) = Fibonacci(n+2) - Fibonacci(k+1).
T(n,k) = Sum_{i=k..n} Fibonacci(i+1). (End)

A045925 a(n) = n*Fibonacci(n).

Original entry on oeis.org

0, 1, 2, 6, 12, 25, 48, 91, 168, 306, 550, 979, 1728, 3029, 5278, 9150, 15792, 27149, 46512, 79439, 135300, 229866, 389642, 659111, 1112832, 1875625, 3156218, 5303286, 8898708, 14912641, 24961200, 41734339, 69705888, 116311074, 193898158, 322961275, 537492672
Offset: 0

Views

Author

Keywords

Comments

Number of levels in all compositions of n+1 with only 1's and 2's.
Apart from first term: row sums of the triangle in A131410. - Reinhard Zumkeller, Oct 07 2012
Number of permutations of length n>0 avoiding the partially ordered pattern (POP) {1>3} of length 4. That is, number of length n permutations having no subsequences of length 4 in which the first element is larger than the third one. - Sergey Kitaev, Dec 08 2020

References

  • Jean Paul Van Bendegem, The Heterogeneity of Mathematical Research, a chapter in Perspectives on Interrogative Models of Inquiry, Volume 8 of the series Logic, Argumentation & Reasoning pp 73-94, Springer 2015. See Section 2.1.

Crossrefs

Partial sums: A014286. Cf. A000045.

Programs

  • Haskell
    a045925 n = a045925_list !! (n-1)
    a045925_list = zipWith (*) [0..] a000045_list
    -- Reinhard Zumkeller, Oct 01 2012
  • Magma
    [n*Fibonacci(n): n in [0..60]]; // Vincenzo Librandi, Apr 23 2011
    
  • Maple
    a:= n-> n*(<<0|1>, <1|1>>^n)[1,2]:
    seq(a(n), n=0..37);  # Alois P. Heinz, May 07 2021
  • Mathematica
    Table[Fibonacci[n]*n, {n, 0, 33}] (* Zerinvary Lajos, Jul 09 2009 *)
    LinearRecurrence[{2, 1, -2, -1}, {0, 1, 2, 6}, 34] (* or *)
    CoefficientList[ Series[(x + x^3)/(-1 + x + x^2)^2, {x, 0, 35}], x] (* Robert G. Wilson v, Nov 14 2015 *)
  • PARI
    Lucas(n)=fibonacci(n-1)+fibonacci(n+1)
    a(n)=polcoeff(sum(m=1,n,eulerphi(m)*fibonacci(m)*x^m/(1-Lucas(m)*x^m+(-1)^m*x^(2*m)+x*O(x^n))),n) \\ Paul D. Hanna, Jan 12 2012
    
  • PARI
    a(n)=n*fibonacci(n) \\ Charles R Greathouse IV, Jan 12 2012
    
  • PARI
    concat(0, Vec(x*(1+x^2)/(1-x-x^2)^2 + O(x^100))) \\ Altug Alkan, Oct 28 2015
    

Formula

G.f.: x*(1+x^2)/(1-x-x^2)^2.
G.f.: Sum_{n>=1} phi(n)*Fibonacci(n)*x^n/(1 - Lucas(n)*x^n + (-1)^n*x^(2*n)) = Sum_{n>=1} n*Fibonacci(n)*x^n, where phi(n) = A000010(n) and Lucas(n) = A000204(n). - Paul D. Hanna, Jan 12 2012
a(n) = a(n-1) + a(n-2) + L(n-1). - Gary Detlefs, Dec 29 2012
a(n) = F(n+1) + Sum_{k=1..n-2} F(k)*L(n-k), F = A000045 and L = A000032. - Gary Detlefs, Dec 29 2012
a(n) = F(2*n)/Sum_{k=0..floor(n/2)} binomial(n-k,k)/(n-k). - Gary Detlefs, Jan 19 2013
a(n) = A014965(n) * A104714(n). - Michel Marcus, Oct 24 2013
a(n) = 3*A001629(n+1) - A001629(n+2) + A000045(n-1). - Ralf Stephan, Apr 26 2014
a(n) = 2*n*(F(n-2) + floor(F(n-3)/2)) + (n^3 mod 3*n), F = A000045. - Gary Detlefs, Jun 06 2014
E.g.f.: x*(exp(-x/phi)/phi + exp(x*phi)*phi)/sqrt(5), where phi = (1+sqrt(5))/2. - Vladimir Reshetnikov, Oct 28 2015
This is a divisibility sequence and is generated by x^4 - 2*x^3 - x^2 + 2*x + 1. - R. K. Guy, Nov 13 2015
a(n) = L'(n, 1), the first derivative of the n-th Lucas polynomial evaluated at 1. - Andrés Ventas, Nov 12 2021
Sum_{n>=0} a(n)/2^n = 10 (Euler, 1990). - Amiram Eldar, Jan 22 2022

Extensions

Incorrect formula removed by Gary Detlefs, Oct 27 2011

A143061 Triangle read by rows, A000012 * A127647 * A000012.

Original entry on oeis.org

1, 1, 2, 2, 3, 4, 3, 5, 6, 7, 5, 8, 10, 11, 12, 8, 13, 16, 18, 19, 20, 13, 21, 26, 29, 31, 32, 33, 21, 34, 42, 47, 50, 52, 53, 54, 34, 55, 68, 76, 81, 84, 86, 87, 88, 55, 89, 110, 123, 131, 136, 139, 141, 142, 143, 89, 144, 178, 199, 212, 220, 225, 228, 230, 231
Offset: 1

Views

Author

Gary W. Adamson, Jul 20 2008

Keywords

Comments

Row sums = A014286 (1, 3, 9, 21, 46, 94, ...); left border = Fibonacci numbers.

Examples

			First few rows of the triangle are:
  1;
  1,  2;
  2,  3,  4;
  3,  5,  6,  7;
  5,  8, 10, 11, 12;
  8, 13, 16, 18, 19, 20;
  ...
		

Crossrefs

Programs

  • Maple
    seq(seq(combinat:-fibonacci(i+2)-combinat:-fibonacci(i+2-j),j=1..i),i=1..20); # Robert Israel, Nov 06 2016

Formula

From Robert Israel, Nov 06 2016: (Start)
T(n,k) = A000045(n+2) - A000045(n+2-k) for 1 <= k <= n.
G.f. as triangle: x*y*(1+x^2*y)/((1-x*y)*(1-x-x^2)*(1-x*y-x^2*y^2)). (End)

Extensions

Corrected by Dintle N Kagiso, Nov 06 2016

A282464 a(n) = Sum_{i=0..n} i*Fibonacci(i)^2.

Original entry on oeis.org

0, 1, 3, 15, 51, 176, 560, 1743, 5271, 15675, 45925, 133056, 381888, 1087645, 3077451, 8658951, 24245655, 67602608, 187789616, 519924075, 1435228575, 3951341811, 10852291273, 29740435200, 81340229376, 222058995001, 605201766675, 1646862596223, 4474969884411
Offset: 0

Views

Author

Bruno Berselli, Feb 16 2017

Keywords

Crossrefs

Cf. A000045.
Partial sums of A169630.
Cf. A014286: partial sums of i*Fibonacci(i).
Cf. A064831: partial sums of (n+1-i)*Fibonacci(i)^2.

Programs

  • Magma
    [&+[i*Fibonacci(i)^2: i in [0..n]]: n in [0..30]];
  • Maple
    with(combinat): P:=proc(q) local a,n; a:=0; print(a); for n from 1 to q do
    a:=a+n*fibonacci(n)^2; print(a); od; end: P(100); # Paolo P. Lava, Feb 17 2017
  • Mathematica
    a[n_] := Sum[i*Fibonacci[i]^2, {i, 0, n}]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Feb 16 2017 *)
    LinearRecurrence[{5,-4,-10,10,4,-5,1},{0,1,3,15,51,176,560},30] (* Harvey P. Dale, May 15 2021 *)
  • Maxima
    makelist(sum(i*fib(i)^2, i, 0, n), n, 0, 30);
    
  • PARI
    a(n) = sum(i=0, n, i*fibonacci(i)^2) \\ Colin Barker, Feb 16 2017
    
  • Sage
    [sum(i*fibonacci(i)^2 for i in [0..n]) for n in range(30)]
    

Formula

O.g.f.: x*(1 - 2*x + 4*x^2 - 2*x^3 + x^4)/((1 - x)*(1 + x)^2*(1 - 3*x + x^2)^2).
a(n) = 5*a(n-1) - 4*a(n-2) - 10*a(n-3) + 10*a(n-4) + 4*a(n-5) - 5*a(n-6) + a(n-7).
a(n) = ((n-1)*Fibonacci(n) + n*Fibonacci(n-1))*Fibonacci(n) + (1 - (-1)^n)/2.

A136391 a(n) = n*F(n) - (n-1)*F(n-1), where the F(j)'s are the Fibonacci numbers (F(0)=0, F(1)=1).

Original entry on oeis.org

1, 1, 4, 6, 13, 23, 43, 77, 138, 244, 429, 749, 1301, 2249, 3872, 6642, 11357, 19363, 32927, 55861, 94566, 159776, 269469, 453721, 762793, 1280593, 2147068, 3595422, 6013933, 10048559, 16773139, 27971549, 46605186, 77587084, 129063117, 214531397, 356346557
Offset: 1

Views

Author

Gary W. Adamson, Dec 28 2007

Keywords

Comments

By definition, the arithmetic mean of a(1) ... a(n) is equal to A000045(n).
Proof of the three-term recurrence formula: a(n+1) - a(n) - a(n-1) = ((n+1)*F(n+1) - n*F(n)) - (n*F(n) - (n-1)*F(n-1)) - ((n-1)*F(n-1) - (n-2)*F(n-2)) = (n+1)*F(n+1) - 2*n*F(n) + (n-2)*F(n-2) = (n+1)*(2*F(n) - F(n-2)) - 2*n*F(n) + (n-2)*F(n-2) = 2*F(n) - 3*F(n-2) = F(n-1) + F(n-3) = L(n-2). - Giuseppe Coppoletta, Sep 01 2014

Examples

			a(6) = 23 = 6*F(6) - 5*F(5) = 6*8 - 5*5 = 48 - 25.
		

Crossrefs

Programs

  • Julia
    # The function 'fibrec' is defined in A354044.
    function A136391(n)
        a, b = fibrec(n - 1)
        n*b - (n - 1)*a
    end
    println([A136391(n) for n in 1:35]) # Peter Luschny, May 18 2022
  • Maple
    with(combinat): seq(n*fibonacci(n)-(n-1)*fibonacci(n-1),n=1..30); # Emeric Deutsch, Jan 01 2008
  • Mathematica
    Table[n Fibonacci[n] - (n-1) Fibonacci[n-1], {n, 1, 20}] (* Vladimir Reshetnikov, Oct 28 2015 *)
  • PARI
    Vec(x*(1-x)*(1+x^2)/(1-x-x^2)^2 + O(x^100)) \\ Altug Alkan, Oct 28 2015
    

Formula

Equals A128064 * A000045.
From R. J. Mathar, Nov 25 2008: (Start)
a(n) = 2*a(n-1) + a(n-2) - 2*a(n-3) - a(n-4) = A045925(n) - A045925(n-1).
G.f.: x*(1 - x)*(1 + x^2)/(1 - x - x^2)^2.
a(n) = A014286(n-1) - A014286(n-2), n>3. (End)
Recurrence: a(n+1) = a(n) + a(n-1) + L(n-2) for n>1, where L = A000032 (see proof in Comments section). - Giuseppe Coppoletta, Sep 01 2014
E.g.f.: (exp(x*phi)/phi+exp(-x/phi)*phi)*(x+1)/sqrt(5)-1, where phi=(1+sqrt(5))/2. - Vladimir Reshetnikov, Oct 28 2015
a(n) = F(n-1) + n*F(n-2). - Bruno Berselli, Jul 26 2017

Extensions

More terms from Emeric Deutsch, Jan 01 2008

A263878 a(n) = Sum_{k=0..n} (-1)^k*k*Fibonacci(k), where Fibonacci(k) = A000045(k).

Original entry on oeis.org

0, -1, 1, -5, 7, -18, 30, -61, 107, -199, 351, -628, 1100, -1929, 3349, -5801, 9991, -17158, 29354, -50085, 85215, -144651, 244991, -414120, 698712, -1176913, 1979305, -3323981, 5574727, -9337914, 15623286, -26111053, 43594835, -72716239, 121181919, -201779356
Offset: 0

Views

Author

Vladimir Reshetnikov, Oct 28 2015

Keywords

Examples

			G.f. = - x + x^2 - 5*x^3 + 7*x^4 - 18*x^5 + 30*x^6 - 61*x^7 + 107*x^8 - 199*x^9 + ...
		

Crossrefs

Programs

  • Magma
    [(-1)^n*(Fibonacci(n-3) + n*Fibonacci(n-1)) - 2: n in [0..30]]; // G. C. Greubel, Jul 30 2018
  • Mathematica
    Table[Sum[(-1)^k k Fibonacci[k], {k, 0, n}], {n, 0, 20}]
    Table[(-1)^n (Fibonacci[n-3] + n Fibonacci[n-1]) - 2, {n, 0, 20}]
  • PARI
    concat(0, Vec(x*(x^2+1)/((x-1)*(x^2-x-1)^2) + O(x^40))) \\ Colin Barker, Oct 31 2015
    
  • PARI
    a(n) = (-1)^n*(fibonacci(n-3) + n*fibonacci(n-1)) - 2; \\ Michel Marcus, Nov 02 2015
    

Formula

a(n) = (-1)^n*(F(n-3) + n*F(n-1)) - 2, where F(n) = A000045(n).
G.f.: x*(x^2+1)/((x-1)*(x^2-x-1)^2).
E.g.f.: (exp(x/phi)*(phi^3+x)+exp(-phi*x)*(1/phi^3-x))/sqrt(5)-2*exp(x), where phi=(1+sqrt(5))/2.
Recurrences:
6-term, homogeneous, constant coefficients: a(0) = 0, a(1) = -1, a(2) = 1, a(3) = -5, a(4) = 7, a(n) = -a(n-1) + 3*a(n-2) + a(n-3) - 3*a(n-4) + a(n-5).
5-term, non-homogeneous, constant coefficients: a(0) = 0, a(1) = -1, a(2) = 1, a(3) = -5, a(n) = -2*a(n-1) + a(n-2) + 2*a(n-3) - a(n-4) - 2.
4-term, homogeneous: a(0) = 0, a(1) = -1, a(2) = 1, (n-1)*(n-2)*a(n) = (2-n)*a(n-1) + n*(2*n-3)*a(n-2) + n*(1-n)*a(n-3).
3-term, non-homogeneous: a(0) = 0, a(1) = -1, (n^2-1)*a(n) = -(n^2+n+1)*a(n-1) + n*(n+2)*a(n-2) - 2*n*(n-1).
0 = a(n)*(-2*a(n) + 15*a(n+1) - 9*a(n+2) + a(n+3) - 3*a(n+4)) + a(n+1)*(-25*a(n+1) + 15*a(n+2) + 15*a(n+3) + 5*a(n+4)) + a(n+2)*(18*a(n+2) - 29*a(n+3) - 13*a(n+4)) + a(n+3)*(+3*a(n+3) + 7*a(n+4)) + a(n+4)*(2*a(n+4)) for all n in Z. - Michael Somos, Nov 02 2015

A104731 Triangle T(n,k) = sum_{j=k..n} (j+1)*binomial(k,j-k), read by rows, 0<=k<=n.

Original entry on oeis.org

1, 1, 2, 1, 5, 3, 1, 5, 11, 4, 1, 5, 16, 19, 5, 1, 5, 16, 37, 29, 6, 1, 5, 16, 44, 71, 41, 7, 1, 5, 16, 44, 103, 121, 55, 8, 1, 5, 16, 44, 112, 211, 190, 71, 9, 1, 5, 16, 44, 112, 261, 390, 281, 89, 10, 1, 5, 16, 44, 112, 272, 555, 666, 397, 109, 11
Offset: 0

Views

Author

Gary W. Adamson, Mar 20 2005

Keywords

Examples

			The first few rows of the triangle are:
1;
1, 2;
1, 5, 3;
1, 5, 11, 4
1, 5, 16, 19, 5;
1, 5, 16, 37, 29, 6;
...
		

Crossrefs

Cf. A014286 (row sums), A045925, A026729.

Formula

Product of the triangles A(n,k) = k+1 and B = binomial(k,n-k) = [1; 0, 1; 0, 1, 1; 0, 0, 2, 1; 0, 0, 1, 3, 1;...], the triangular view of A026729.

A117152 Sum of product of Fibonacci and triangular numbers.

Original entry on oeis.org

0, 0, 1, 7, 25, 75, 195, 468, 1056, 2280, 4755, 9650, 19154, 37328, 71635, 135685, 254125, 471317, 866669, 1581620, 2866970, 5165630, 9256871, 16507092, 29304660, 51812160, 91264885, 160207603, 280340161, 489117135, 851054535
Offset: 0

Views

Author

Mitch Harris, Feb 28 2006

Keywords

References

  • A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003

Crossrefs

Programs

  • Mathematica
    Binomial[n, 2]Fibonacci[n + 2] - n Fibonacci[n + 3] + Fibonacci[n + 5] - 5
  • PARI
    a(n) = sum(k=2, n, k*(k-1)*fibonacci(k)/2); \\ Michel Marcus, Feb 28 2019

Formula

a(n) = Sum_{k=2..n} C(k,2)*F(k), where F(n) = A000045(n), the Fibonacci numbers and C(n, 2) = A000217(n-1), the triangular numbers, n(n-1)/2.
a(n) = C(n,2) F(n+2) - n F(n+3) + F(n+5) - 5.
G.f.: x^2(1 + 3x + x^3)/((1 - x)(1 - x - x^2)^3).
a(n)-a(n-1) = A086926(n). - R. J. Mathar, May 16 2025
Showing 1-9 of 9 results.