cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Dintle N Kagiso

Dintle N Kagiso's wiki page.

Dintle N Kagiso has authored 3 sequences.

A282563 One third of the number of edges in the metrically regular triangulation of the n-th approximation of the Koch snowflake fractal.

Original entry on oeis.org

1, 8, 68, 596, 5300, 47444, 425972, 3829652, 34450484, 309988820, 2789637236, 25105686548, 225946984628, 2033506084436, 18301487651060, 164713120424084, 1482417010074932, 13341748795707092, 120075721981494644, 1080681429113975060
Offset: 1

Author

Dintle N Kagiso, Feb 18 2017

Keywords

Comments

A triangulation is metrically regular if all its triangles are congruent.
Three times the n-th sequence entry a(n) is the number of edges of the n-th approximation of the Koch snowflake fractal.

Examples

			a(1)=1, and there are three edges in a triangle. a(2)=8 and there are 24 edges in the second approximation of the Koch fractal.
		

Crossrefs

Programs

  • Maple
    L:=[1,8]: for k from 3 to 30 do: L:=[op(L),13*L[k-1]-36*L[k-2]]: od: print(L);
  • Mathematica
    CoefficientList[Series[(1 - 5 x)/((1 - 4 x) (1 - 9 x)), {x, 0, 19}], x] (* or *) Table[(1/5) (4*9^# + 4^#) &[n + 1], {n, -1, 19}] (* Michael De Vlieger, Feb 18 2017 *)
    LinearRecurrence[{13,-36},{1,8},30] (* Harvey P. Dale, Sep 22 2019 *)

Formula

a(n+1) = (1/5) * (4*9^n +4^n) for all n > 0.
a(1)=1, a(2)=8, a(3)=68, a(n) = 13*a(n-1)-36*a(n-2) for n > 2.
G.f.: (1-5*x)/((1-4*x)*(1-9*x)).

A277492 Number of vertices in the metrically regular triangulation of the n-th approximation of the Koch snowflake fractal.

Original entry on oeis.org

3, 13, 96, 780, 6684, 58812, 523932, 4693884, 42158940, 379086396, 3410401308, 30688106748, 276170940636, 2485450385340, 22368701146524, 201316901032572, 1811846472148572, 16306595700758844, 146759271112516380, 1320833079235394556
Offset: 0

Author

Dintle N Kagiso, Oct 17 2016

Keywords

Comments

A triangulation is metrically regular if all its triangles are congruent.

Examples

			a(1) = 1+2+3+4+3 = 13 because an equilateral triangle can be cut up into 9 triangles with side length one-third which have 1+2+3+4 = 10 vertices and 3 further triangles yield 3 additional vertices.
		

Crossrefs

Cf. A277491.

Programs

  • Maple
    L:=[3,13,96]: for k from 4 to 34 do: L:=[op(L),13*L[k-1]-36*L[k-2]]: od: print(L);
  • Mathematica
    Table[(Boole[n == 0] 35/36) + (44*9^# + 21*4^#)/5 &[n - 1], {n, 0, 19}] (* or *)
    CoefficientList[Series[(3 - 26 x + 35 x^2)/((1 - 4 x) (1 - 9 x)), {x, 0, 19}], x] (* Michael De Vlieger, Oct 21 2016 *)
    LinearRecurrence[{13,-36},{3,13,96},30] (* Harvey P. Dale, Sep 17 2024 *)

Formula

a(n+1) = (1/5) * (44*9^n + 21*4^n) for all n > -1.
a(0)=3, a(1)=13, a(2)=96, a(n) = 13*a(n-1)-36*a(n-2) for n > 2.
G.f.: (3-26*x+35*x^2)/((1-4*x)*(1-9*x)).

A277491 Number of triangles in the standard triangulation of the n-th approximation of the Koch snowflake fractal.

Original entry on oeis.org

1, 12, 120, 1128, 10344, 93864, 847848, 7642920, 68835432, 619715496, 5578225896, 50207178792, 451877192040, 4066945060008, 36602706866664, 329425167106344, 2964829725182568, 26683480411545000, 240151375243512552, 2161362583350043176, 19452264074784109416
Offset: 0

Author

Dintle N Kagiso, Oct 17 2016

Keywords

Comments

The rational function A_n = (a_0)/5 * (8 - 3(4/9)^n) where a_0=1 in the Wikipedia link below equals A_n = 1/9^n*a(n).

Examples

			a(1) = 9+3 = 12, because an equilateral triangle can be cut up into 9 triangles with side length one-third and 3 further triangles are stacked onto the three central side pieces.
		

Crossrefs

Cf. A277492.

Programs

  • Magma
    [(8*9^n-3*4^n)/5 : n in [0..30]]; // Wesley Ivan Hurt, Apr 11 2017
  • Maple
    L:=[1,12]: for k from 3 to 34 do: L:=[op(L),13*L[k-1]-36*L[k-2]]: od: print(L);
  • Mathematica
    Table[1/5*(8*9^n - 3*4^n), {n, 0, 20}] (* or *)
    CoefficientList[Series[(1 - x)/((1 - 4 x) (1 - 9 x)), {x, 0, 20}], x] (* Michael De Vlieger, Nov 10 2016 *)
    LinearRecurrence[{13,-36},{1,12},30] (* Harvey P. Dale, Feb 26 2023 *)
  • PARI
    Vec((1-x)/((1-4*x)*(1-9*x)) + O(x^30)) \\ Colin Barker, Oct 19 2016
    

Formula

G.f.: (1-x) / ((1-4*x)*(1-9*x)).
a(n) = 13*a(n-1) - 36*a(n-2) for n>1, a(0)=1, a(1)=12.
a(n) = (8*9^n-3*4^n)/5.